
Lecture Notes in Physics 938

Tom Rother

Green’s 
Functions 
in Classical 
Physics



Lecture Notes in Physics

Volume 938

Founding Editors

W. Beiglböck
J. Ehlers
K. Hepp
H. Weidenmüller

Editorial Board

M. Bartelmann, Heidelberg, Germany
P. Hänggi, Augsburg, Germany
M. Hjorth-Jensen, Oslo, Norway
R.A.L. Jones, Sheffield, UK
M. Lewenstein, Barcelona, Spain
H. von Löhneysen, Karlsruhe, Germany
A. Rubio, Hamburg, Germany
M. Salmhofer, Heidelberg, Germany
W. Schleich, Ulm, Germany
S. Theisen, Potsdam, Germany
D. Vollhardt, Augsburg, Germany
J.D. Wells, Ann Arbor, USA
G.P. Zank, Huntsville, USA



The Lecture Notes in Physics

The series Lecture Notes in Physics (LNP), founded in 1969, reports new devel-
opments in physics research and teaching-quickly and informally, but with a high
quality and the explicit aim to summarize and communicate current knowledge in
an accessible way. Books published in this series are conceived as bridging material
between advanced graduate textbooks and the forefront of research and to serve
three purposes:

• to be a compact and modern up-to-date source of reference on a well-defined
topic

• to serve as an accessible introduction to the field to postgraduate students and
nonspecialist researchers from related areas

• to be a source of advanced teaching material for specialized seminars, courses
and schools

Both monographs and multi-author volumes will be considered for publication.
Edited volumes should, however, consist of a very limited number of contributions
only. Proceedings will not be considered for LNP.

Volumes published in LNP are disseminated both in print and in electronic for-
mats, the electronic archive being available at springerlink.com. The series content
is indexed, abstracted and referenced by many abstracting and information services,
bibliographic networks, subscription agencies, library networks, and consortia.

Proposals should be sent to a member of the Editorial Board, or directly to the
managing editor at Springer:

Christian Caron
Springer Heidelberg
Physics Editorial Department I
Tiergartenstrasse 17
69121 Heidelberg/Germany
christian.caron@springer.com

More information about this series at http://www.springer.com/series/5304

http://www.springer.com/series/5304


Tom Rother

Green’s Functions
in Classical Physics

123



Tom Rother
German Aerospace Center
Neustrelitz, Germany

ISSN 0075-8450 ISSN 1616-6361 (electronic)
Lecture Notes in Physics
ISBN 978-3-319-52436-8 ISBN 978-3-319-52437-5 (eBook)
DOI 10.1007/978-3-319-52437-5

Library of Congress Control Number: 2017937574

© Springer International Publishing AG 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



The mill where George Green lived and died in 1841. Today it is a part of the Green’s Windmill
and Science Centre in Nottingham, UK



Preface

This book is singing the praises of Green’s functions. Its concept was formed a
couple of years ago, after finishing a consistent Green’s function formulation of
electromagnetic wave scattering on nonspherical objects. It turned out that such
a consistent Green’s function formulation provides a sound mathematical basis to
discuss the advantages and disadvantages of different numerical approaches which
have been developed so far to solve those scattering problems. But I became already
acquainted with similar mathematical structures during my early PhD activities in
the field of quantum statistics. This long-lasting activity with Green’s functions
led me to the issue of the conceptual importance of these functions for physics,
in general. Unfortunately, even today Green’s functions are often considered and
discussed only from the point of view of an appropriate mathematical tool for
solving differential equations. The works of J. Schwinger and F. Dyson belong to
the few exceptions which emphasize the conceptual importance of these functions
in quantum statistics and quantum field theory.

Starting from these experiences and first but more philosophical considerations—
where the latter are reflected in the prologue of this book—I tried to apply the
Green’s function formalism to well-known problems of classical physics, some of
which are usually solved not by this formalism but other methods. This activity was
aimed at convincing myself from the conceptual importance of Green’s functions
also in classical fields of physics. The present book is the result of this effort. It is
written as an introduction for those who want to become more familiar with Green’s
functions and their importance and usage in classical physics. However, a short
outlook regarding the importance of Green’s functions in quantum mechanics as
well as their calculation by use of the methods discussed in the foregoing chapters
is provided in the final chapter of this book. Looking at physics from the point of
view formulated in the prologue proved to be very helpful for me when I tried to
enter new fields of physics. Maybe the reader will also benefit from this point of
view.

Finally, I would like to express my deepest gratitude to my parents Elisabeth
and Fritz Rother, to my wife Doreen and to my teacher Prof. Wolf-Dietrich Kraeft
for their support in manyfold ways and their continuous interest in my scientific
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activities over decades. Special thanks go also to Mr. J. Duff, heritage development
officer from the Green’s Windmill and Science Centre, Nottingham (UK), for
providing me with the cover picture of Green’s windmill. I would also like to thank
Dr. C. Ascheron, senior editor at Springer Science and Business Media, for his
continuous interest and assistance in publishing this book.

Neustrelitz, Germany Tom Rother
Autumn, 2016
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Chapter 1
Prologue

Experience is an individual process. Language is a cultural
process of abstraction

1.1 About the “State” of Physics

On the occasion of an international congress of mathematicians that was taking
place in Paris in 1900 David Hilbert gave his famous lecture on “mathematical
problems”. In this lecture he addressed a number of questions, the answers to which
he considered to be most important for the further development of mathematics.
Problem number 6 is concerned with the mathematical treatment of the axioms of
physics. Hilbert himself has considered this problem in detail. In 1924 he published
a paper entitled “Grundlagen der Physik” (Engl.: “Foundations of Physics”) in the
“Mathematische Annalen” (Hilbert 1924). In this paper he proposed a system of
axioms that is based on field theoretical considerations. This system of axioms
was aimed at overcoming the predominant mechanical point of view on physics
at this time. However, the fast development of Quantum Mechanics that passed off
in parallel soon led into a total new physics that could neither be explained in terms
of particles nor in terms of fields. This new branch of physics came along with
new mathematical structures whose epistemological consequences are still under
(sometimes quite controversial!) discussions. At this congress Hilbert advocated
also a strict axiomatic and self-contained foundation of mathematics—the so-
called “Hilbert’s program”. But this program was soon overthrown by Goedel’s
incompleteness theorems.

It is especially this last aspect that makes it all the more remarkable that even
today a “Theory of Everything” (TOE) enjoys a growing popularity not only in
the more popular literature but also among many physicists. How can a TOE be
propagated in physics if the much more severe mathematics has already abandoned
such an idea? And wouldn’t it be much more appropriate to have a common
structure of our current physical experience that is open also for new and upcoming
experiences? The constant effort for such a common structure is strongly related
to the “cultural aspect” not only of physics but of any science. In this context I
want the term “cultural aspect” to be understood as the necessity to consolidate
the language used to express our experiences in a certain field of science. Only

© Springer International Publishing AG 2017
T. Rother, Green’s Functions in Classical Physics, Lecture Notes
in Physics 938, DOI 10.1007/978-3-319-52437-5_1
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2 1 Prologue

this will allow us to effectively exchange and pass on the experiences as well
as to integrate new experiences in a satisfactory manner. Regarding physics, this
language is essentially a mathematical one. This linguistic aspect of science was
nicely expressed already by N. Bohr. In Bohr (1960) he stated that “physics is to
be regarded not so much as the study of something a priori given, but rather as
the development of methods of ordering and surveying human experience. In this
respect our task must be to account for such experience in a manner independent
of individual subjective judgement and therefore objective in the sense that it can
be unambiguously communicated in ordinary human language”. And if we assume
that gathering experiences in physics is still an open process (a consequence of
the—hopefully—never-ending question of “why”?) we are occasionally forced to
consolidate our language. Regarding our recent physical experience one may ask if
we are in the possession of a common mathematical structure?

If looking at the various physical disciplines one may get the impression that even
today we are farther away than ever from such a goal. The different historical roots
of different disciplines can considered to be one reason for this situation. That we do
not know the linking elements between different disciplines—just think of General
Relativity and Quantum Mechanics—may be another reason. To make things worse
it must be noted moreover that the degree of mathematization has drastically
increased during the last century. Basic physical aspects are sometimes hidden
behind the details of complex mathematical structures and solution procedures. And,
due to the increasing importance of computer science and the resulting numerical
aspects of mathematical solution methods this “concealment effect” has become
even more worse. For that very reason and to support the idea of a common
structure of our physical experience it is important to clearly distinguish between
numerical aspects, aspects of mathematical methods, and the real physical aspects
in a certain field of physics. But it seems to me that it is not a common practice
to meet this claim. It is moreover increasingly ignored in our daily scientific
activity. The huge discrepancy between models discussed in modern cosmology
(dark matter, description of the universe seconds after the big bang, . . . ) and
the restricted mathematical capabilities to solve the “simple” physical problem of
electromagnetic wave scattering on nonspherical particles is just one example of the
situation described above. The latter problem is a problem where I have gathered
some experiences over the years. Regarding the former problem it is hard for me to
distinguish between wild guess, aspects of mathematical solution methods, and real
physical experience. But this could also be my very own problem, of course!

In addition, today’s physics faces the following problem: The advent of modern
physics can be dated to the time of Galilei or so. He invented the experiment as an
essential tool to reveal the laws of nature. In contrast, the ideas of the great Greek
philosophers have been developed mostly on the basis of passive observations and
logical deductions. Nowadays, physics cannot be imagined without the sometimes
complex interplay between experiment and theory. But regarding experiments on
the atomic or subatomic scale analyzable data are only generated via several levels
of models and with an enormous numerical effort (one may think of the recent
LHC experiment at Cern to detect the Higgs particle, for example). Therefore,
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caution is advised when we intend to interpret the importance and epistemological
consequences of such data. And our recent impossibility to perform experiments on
a cosmic scale allots the position of a passive observer to us, even if involuntary.
In such situations we are only able to test the consistency and compatibility of
these observations with our recent physical experience. Lest I be misunderstood,
curiosity, imagination, and speculation are indispensable in our endeavor to put our
experimental experience on a firm footing. But we also have to accept the “way
through the desert” to meet this target. This means, among other things, that we have
to verify the experience gained so far and to consolidate the language we are using
to describe this experience at times. New theories, new principles, new notations as
well as new explanations should only be introduced according to “Occam’s razor”.
From my point of view, some of the concepts and theories in dispute—especially
the dispute regarding epistemological consequences of Quantum Mechanics—suffer
from an imprecise terminology. Let us consider two examples to support this point
of view. Both of these examples kept me occupied over periods.

The first example concerns the term “velocity” or “momentum”. The following
statement can frequently be found in textbooks to express an essential difference
between classical particle physics and Quantum Mechanics: It is impossible in
Quantum Mechanics to measure position and velocity/momentum at the same
time with an (in principle) infinite precision. Position and momentum comply
with the uncertainty relation. Such a statement implies that—in contrast to
Quantum Mechanics—this is possible in classical particle physics. I have discussed
this aspect frequently with students and colleagues. I usually faced a certain
helplessness when I ask about the possibility to measure position and momentum
of a classical point mass with an infinite accuracy at a fixed time—even if it is only
a matter of an idealized thought experiment. The usual answer is the following: In
accordance with the transition from the difference to the derivative, the distance
between the two time steps at which the position of the point mass is measured can
(at least theoretically) be shortened in a limiting process up to zero to determine
the velocity of a point mass at a fixed position. But there are two arguments against
this answer. First, the transition from the difference to the derivative makes only
sense if the function under debate is known. The first derivative of x D g=2 � t2 with
respect to time differs obviously from the first derivative of x D g=4 � t2. Only by
temporal successive measurements we are able to find out the correct function, and,
therefore, the correct velocity. This becomes already clear if we look at the definition
of the uniform motion. To detect a uniform motion we have to measure if the point
mass covers equal distances in equal time steps. Second but more important, the
above statement contradicts a basic property that we usually assign to a point mass.
It is the property that a point mass occupies a certain point in space at a certain
time! As a consequence, the motion of a point mass can only be detected if it is
found at different times in different positions. It seems therefore more appropriate
to consider “velocity/momentum” not as a measurable but a deduced quantity to
characterize the state of motion. Really measurable in the physics of a classical
point mass is—beside mass—only the position at a certain time—provided that we
own appropriate standards for “mass”, “length”, and “time”. And, fortunately, we
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own such standards! In other words: x.t/ contains all the information about a point
mass of mass m. All other quantities like velocity, momentum, energy, etc. can be
deduced/derived from this “state function”. I consider therefore x.t/ as the basic
state function of a classical point mass throughout the second chapter of this book.
But it should be emphasized that we have to clarify the relation between the at first
abstract “state function” and real measurements already in classical particle physics.
Regarding Quantum Mechanics, this point of view raises the following question:
What are the smallest time interval between two successive position measurements?
And, closely related to that: What are appropriate standards on an atomic and
subatomic scale to measure length and time?

The second example is concerned with the two terms “property” and “state” of
an object. These two terms are often used synonymously. But would it not be better
to clearly differentiate between these two terms since representing two different
categories used to structure our physical experience? The term “property” is used
to characterize (or, better, to define) a certain physical object or a certain class of
physical objects we have already acquired a certain knowledge about. On the other
hand, performing a measurement on a certain object aimed at the detection of a
certain “state” of this object or a “change of state”, and to express this state or this
change of state quantitatively by “measure” and “number”. However, the property
of a defined physical object may represent the state of another physical object. But
within a certain object class the properties of an object persist unchanged. For a
better understanding let us have a look at the following example from mathematics.
In the second chapter of this book, when dealing with the Lippmann-Schwinger
equation, we will discuss this aspect again from a physical point of view.

The object “natural even number” may be defined by its two properties of being
always positive and divisible by 2. A certain number can be considered to represent
the state of this object. But if we consider the object “integer number” both these
properties get lost. These properties are now resolved into the states “even number”,
“odd number”, “positive number”, and “negative number” which can be assigned to
this new object. In mathematics, the necessity to define new objects may be caused
by an operation that results in a new state that cannot be assigned to the object
to which the operation was applied. Adding two natural even numbers will always
produce a new natural even number. Contrary, subtraction can produce negative
numbers.

From this point of view it’s hard for me to understand the following statement
I have found in a textbook about Quantum Mechanics: In classical physics, the
two statements “to possess a property” and “to measure a state” are identical.
This does not apply to Quantum Mechanics! But in both these fields of physics
we should actually be able to define the two different objects “classical point mass”
and “quantum particle”, for example, by their respective properties and possible
states. And, finally, procedures must be defined to map these (at first abstract) states
(but not the properties!) to measurable quantities. Let me emphasize again: While
a certain object may be found in different states its properties remain unchanged.
Just as a simple example: We can condense our experimental experience that the
“electron” interacts in a certain way with an inhomogeneous magnetic field” into
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the property “spin”. The two possible values ˙„=2 are then the two possible states
of this property. The state of this property can be measured in a Stern-Gerlach
experiment, for example. That is, we do not measure the property “spin” but the
possible states assigned to this property. Therefore I’m convinced that the definition
of object classes by corresponding properties and their respective states, and the
definition of a procedure to map these states to measurable quantities represent a
quite general framework to practice physics. This book is aimed at a corroboration
of this point of view.

Based on this point of view let us now turn toward the basic structural elements
of physics. We will face these elements again and again in this book.

1.2 Basic Structural Elements of Physics

My negative answer to the above posed question, if we are already in the possession
of a common structure of our physical experience, may serve as a justification for
this book. However, I do not want to raise the expectation to provide a satisfactory
answer to this question. Instead, it is the intention of the book at hand to give
thought-provoking impulses for a corresponding discussion of this issue. It is
focusing on a special class of functions—the Green’s functions. This is due to my
belief that these functions represent a basic mathematical tool that is abstract enough
to allow a common structure of our experiences gained so far in physics, and that
this structure is still open to include upcoming experiences (I have read somewhere
that it is an advantage of abstract expressions that, at first, one can imagine nothing
but nothing wrong either). In what follows I will try to justify my belief in more
detail.

I consider the 8 categories

• object
• property
• state
• cause/source
• effect
• interaction
• measure
• number

as fundamental in physics. The first 6 categories are not only restricted to rational
considerations. In old sagas and in the Greek mythology, for example, the state of
the object world is caused by the effect of the deities as well as the interaction of
the deities among each other or with the humans. The deities are described by their
divinely properties. And is not every history of creation finally an expression of
the human want to trace back the state of the world to a certain cause? Contrary, in
science we want to avoid such a subjective explanation. This can be achieved with
the two additional categories measure and number with which we can establish
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a link to mathematics. If I would be requested to provide a short definition of
“physics” (and that is a legitimate request in view of the intention of this book)
my answer would be the following:

Physics refers to a certain part of human activities that tries to express cause
and effect relations in specified object classes by measure and number. Objects
are defined by their properties. Effect expresses the fact that a considered object
may be observed in a certain state, or that it changes its state. The corresponding
cause may be a priori given and justified only by our experimental experience. But it
may also be traced back to a known interaction between similar or different objects.
The former may be called impressed causes/sources, and the latter may be called
induced causes/sources—to adopt the well-known notation from Electrodynamics.
It is an essential goal of our activities in physics to replace impressed sources by
induced sources. And the experience that an interaction can be replaced by an
equivalent cause/source can be considered as a generalization of the well-known
Huygens’ principle of optics.

Even if not exhaustive I consider this answer something like a “least common
denominator” since it accounts for the above mentioned categories and emphasizes
the very rational nature of physics. According to this understanding of physics these
categories are indeed fundamental. Moreover, it is quite remarkable that they can
be linked to the Green’s function formalism. In other words: I am convinced that
using Green’s functions will allow us to sharpen our physical language and to make
more precise statements about nature. This book is therefore focused on the things
in common of different physical disciplines rather than their differences. Now, let
us see how the Green’s functions come into play.

 .˛/ D
Z

G.˛; ˇ/ � �.ˇ/ dˇ (1.1)

is the most important expression in this book we will meet again and again.
Depending on the problem being considered it will sometimes be modified appro-
priately.  represents the abstract state of an object. This state is dependent on ˛. ˛
represents a variable like time or position, or both. �.ˇ/ denotes the corresponding
source/cause that depends on the variable ˇ. The Green’s function G.˛; ˇ/ is
the quantity that characterizes a certain object or a process with different objects
involved (an interaction process, for example) and establishes a link between the
state  and the source �. It is an essential objective of this book to demonstrate
that different physical experiences can be expressed through the mathematical
structure of expression (1.1). Regarding this expression we face the following basic
questions:

• We know the state of the object and the Green’s function, and we ask for the
source that is responsible for a certain state.

• We know the state and the source, and we ask for the Green’s function that
characterizes the object or the process this object gets involved in.

• We know the Green’s function and the source, and we ask for the resulting state.
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Only the last question can be answered uniquely. If �.ˇ/ represents an induced
source it can be considered as the result of an interaction between objects from the
same object class as well as from different object classes, as already mentioned.
Scattering of a plane electromagnetic wave with a three-dimensional obstacle—
let us say an ideal metallic sphere—is a nice example for the latter situation.
Scattering describes the interaction of the two objects “ideal metallic sphere” and
“plane electromagnetic wave”. As a result of this interaction process we observe a
scattered field. This interaction may be formulated in terms of appropriate boundary
conditions. But the scattered field may also be considered as the effect of a source
(an induced surface current) that exists at the sphere’s surface. These different
point of views on scattering (as in Quantum Mechanics one could certainly speak
of different pictures, the interaction- and the source picture) result in different
consequences for the respective mathematical solution methods. This aspect is
discussed in Chap. 4 in more detail.

The application of the Green’s function formalism implies the necessity to
specify the considered objects and their possible states, and to split a physical
process consequently into cause and effect relations. It is therefore closely related
to experimental physics since the same is—more or less obviously—done in
the preparation of any experiment. But this splitting comes along with another
advantage. By means of source and effect ladders we are able to connect different
theoretical levels. This means that an effect on a lower theoretical level may be
replaced by an appropriate source on a higher theoretical level. For example, the
description of the collision of two hard spheres can be described best on the level
of Newtonian mechanics by employing energy- and momentum conservation and
the related boundary conditions. According to our more general understanding of
Huygens’ principle we can replace these boundary conditions by equivalent sources.
Corresponding examples will be considered in detail in the next two chapters. To
trace back this collision to a theory on an atomic or subatomic scale, i.e., to a
corresponding interaction process between the atomic constituents of both spheres,
even if possible, would only be an unnecessary complication. The introduction
of phenomenological sources on a higher theoretical level is not the only but one
possibility to “scale up” complex interaction processes on a lower theoretical level.

Expression (1.1) can be applied to the measurement process as well. The
interaction of the considered object with the measurement devise results in a certain
state of the latter. This state is related to a certain measure and must be mapped to
a certain number (by calibration, for example). Therefore, two different levels of
models must be considered altogether. First, we have to model the relation between
the source � and the state of the considered object according to (1.1) (G W � !  ).
This process requires the knowledge of the Green’s function related to the object.
Second, we have to model the mapping of the state  of the object to state  M of
the measurement devise by use of its related Green’s function according to (1.1)
(GM W  !  M). That is, the state  of the object is now acting as a source that
causes a certain state of the measurement devise via a certain interaction process.
Performing a precise measurement requires a precise knowledge of this interaction
process as well as of the sources and states involved. Any uncertainty of this
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knowledge results in a corresponding uncertainty of the number of a measurement.
It is demonstrated in Chap. 5 that certain types of stochastic sources in the physics
of classical point masses result already in a mathematical formalism that is only
known from Quantum Mechanics, so far.

Regarding the categories object and interaction I want to add the following
remark: Both categories are reflecting an important aspect of our human perception
and the way we gain physical experience. Meant is the decomposition of an entity
into parts (objects) which are at first considered to exist independently. Only
afterwards they are considered to be interrelated among each other by assumed
essential interaction processes that have been extracted from our observations. With
“assumed” I want to express the fact that the assessment of an interaction process
as “essential” is strongly dependent on our level of knowledge. Therefore, if a
parameter is assigned to an object, and if this parameter only gains importance in
an interaction process, this will have an impact on the importance of this parameter
as well as on its number measured in a certain experiment. The determination of the
“observable mass” of an electron with the renormalization procedure in Quantum
Field Theory is an example of this situation. This procedure—even if sometimes
considered as less esthetic—expresses the important principle that there do not exist
ideally isolated objects, i.e. objects, that do not interact with their environment. We
may compare such a principle with the principle of the impossibility of a perpetual
motion machine. This principle makes physics more complex and less accessible to
a strict mathematical consideration. But, on the other hand, it is closer to reality. We
will come back to this aspect in the next chapter when discussing the Lippmann-
Schwinger equation of the motion of a classical point mass in the presence of
friction.

To summarize the idea of the discussion so far: I consider the three categories
source, effect, and interaction as the trinity of physics. And all these categories
are reflected in the Green’s function formalism! But even such basic principles as
Causality (clearly expressed already by relation (1.1) itself), energy conservation
of interaction processes, Reciprocity, etc. can be related to or expressed in a
straightforward way by Green’s functions. Corresponding examples are frequently
discussed in this book.

The following methodological aspect strikes me also as important from a
numerical point of view: Using Green’s functions will allow us to map complex
physical processes to simple graphical structures and to relate these structures
to certain mathematical procedures. Feynmann diagrams used in Quantum Field
Theory are well-known examples for this mapping. But similar diagrams are also
known in Quantum Statistics, in classical Electrodynamics, in Angular Momentum
Theory, etc.. In so doing we are able to prepare complex physical processes for a
systematic numerical treatment, and, hopefully, to perform numerical calculations
even faster. It may be compared to the advantage of introducing matrices to
solve algebraic equations, or the advantage that comes along with using complex
functions in Electrodynamics. However, this will only be possible if regularly
recurring structures are identified that are independent of the object class under
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consideration. This can be achieved in some situations with the above mentioned
Lippmann-Schwinger equation.

I do not want to conceal that there is a problem with the Green’s function
in relation (1.1) if eigenvalue problems are considered. But this problem can
be solved—at first in a pragmatic way—if replacing the Green’s function by an
appropriate expansion of Dirac’s delta function, and by a restriction to a certain type
of sources. I will call this modification the “source picture” of the Fourier series for
reasons that will become clear later on in chapters two and three. But I will try to
give a more severe mathematical justification of this source picture in Chap. 5 of
this book.

At the end of this section I want to reflect shortly about the following aspect
which must be taken into account if the importance and epistemological conse-
quences of a new theory is discussed: Even if physics is firmly rooted in mathematics
it is primarily based on our experimental experience. And this experience—which is
incapable of proof from a stringent mathematical point of view—can be condensed
into more or less general principles. These principles are on the top of physics
and constitute the essential difference from mathematics. That is, from all possible
mathematical structures we have to select those ones that match to these principles.
If reading textbooks about conventional Quantum Mechanics, for example, one may
get the impression that its laws—especially the Schrödinger equation—cannot be
deduced from such a principle. But it was already demonstrated by Schwinger that
this equation (and not only this) can be derived from a quantum action principle
as Hamilton’s equations of motion may be deduced from the action principle
in Classical Mechanics. Regarding this subject I highly recommend the book
(Schwinger 2001), but especially the Prologue and Schwinger’s notes on the Stern-
Gerlach experiment therein.

1.3 About Classical Physics and Quantum Mechanics

Even if existing since nearly 100 years, there are still controversial and some-
times mystic discussions regarding the epistemological consequences of Quantum
Mechanics. We are obviously able to describe the behaviour of objects on the atomic
and subatomic scale in a quite formal mathematical way rather than to align it with
our experience from classical physics. In the younger days of Quantum Mechanics
those contradictions have been discussed on a purely philosophical level. But since
the beginning of the 1980s there exist several experimental results (and the number
of corresponding experiments is growing continuously even in our days) which
seem to confirm the correctness of the strange behaviour of quantum objects. Two
experiments are within the focus of these discussions. These are the double-slit and
Bell’s experiment. Both experiments are discussed in detail in Chaps. 4 and 5.

Regarding the double-slit experiment Feynman noticed in “The Character of
Physical Law” (Feynman 1967): I will take just this one experiment, which has been
designed to contain all of the mystery of Quantum Mechanics, to put you up against
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the paradoxes and mysteries and peculiarities of nature one hundred per cent.
Any other situation in Quantum Mechanics, it turns out, can always be explained
by saying: You remember the case of the experiment with the two holes? It’s the
same thing. How does it looks like, and what does it tells us? If shooting quantum
objects (photons, electrons, etc.) against a double-slit we can observe a frequency
distribution on a screen in the far field behind the double-slit that corresponds to the
well-known interference pattern of classical plane wave scattering on a double-slit.
This observation is one of our crucial experimental justifications for introducing
an abstract probability state concept that allows for a superposition of such states,
and, finally, for linking the abstract states to measurable probabilities by calculating
the scalar product appropriately. In other words, it is an important experimental
justification for the formal mathematical concept behind Quantum Mechanics.

On the other hand, we have Bell’s experiment as an essential indication of the
alleged “nonlocal character” of Quantum Mechanics, and, strongly related to this,
as an evidence of the existence of so-called “entangled states”. Bell’s experiment has
its roots in the basic discussion regarding the completeness of Quantum Mechanics.
This discussion was initiated by Einstein, Podolsky and Rosen (EPR) on the one
side, and by Bohr on the other side in two famous papers published in 1935 (Einstein
et al. 1935; Bohr 1935). In the paper of EPR Quantum Mechanics was accused
of being incomplete, and, therefore, that one has to look for hidden parameters
to replace it by a complete theory. In his answer, Bohr defended his position of
understanding Quantum Mechanics as a complete theory and his insistence on the
principle of complementarity. Bohr’s position is also known as the “Copenhagen
interpretation”. But, again, this discussion was purely philosophical until the famous
paper of Bell (Bell 1964). He derived therein an inequality (now called Bell’s
inequality) that allows for an experimental proof of the nonlocal character of
Quantum Mechanics as well as the existence of entangled states. But it took
again more than one decade until the first experiments with polarization-entangled
photons provided us with an indication that Bell’s inequality can, indeed, be violated
in Quantum Mechanics. These experiments have been performed by A. Aspect
and co-workers at the beginning of the 1980s (Aspect et al. 1982). The existence
of entangled states is the most essential difference between Quantum Mechanics
and classical physics, according to Schrödinger. He wrote in (Schroedinger 1935):
When two systems, of which we know the states by their respective representatives,
enter into temporary physical interaction due to known forces between them, and
when after a time of mutual influence the systems separate again, then they can no
longer be described in the same way as before viz. by endowing each of them with
a representative of its own. I would not call that one but rather that characteristic
trait of Quantum Mechanics, the one that enforces its entire departure from classical
lines of thought. By the interaction the two representatives have become entangled.
Today, Schrödinger’s position is well accepted among most of the physicists. And
there is little doubt that entangled states belong exclusively to the realm of Quantum
Mechanics. Since entangled states did not play any role in conjunction with the
double-slit experiment, it seems that we have to add Bell’s experiment to the above
given statement of Feynman to cover “the whole mystery of Quantum Mechanics”.
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Chapter 5 of this book provides a critical analysis of this point of view and
demonstrates moreover, that well-established and in many experiments well-proven
mathematical concepts of Quantum Mechanics can be applied with benefit to certain
situations in classical physics as well. But the following general aspects are already
to be mentioned at this point:

1. Probabilities are of essential importance in Quantum Mechanics. Even if we
are faced with an ideal situation, quantum mechanics allows only probability
statements with respect to the experimental outcome. To get a first impression of
the probability concept in Quantum Mechanics let us have a rather phenomeno-
logical look at the well-known Stern-Gerlach experiment.

Sending electrons through an inhomogeneous magnetic field results in a
deflection of the electrons up or down with respect to a fixed direction. That is,
we are operating within a two-dimensional but classical event space. But we are
unable to predict whether a single electron will be deflected up or down when
traversing the inhomogeneous magnetic field. The only thing we can do is to
repeat this experiment many times until we are able to relate a probability to
each of these two classical events. Let us assume that the probability is 1=2 for
both these events. The observation of the deflection of electrons when traversing
the magnetic field is qualitatively related to the interaction of this field with the
property “spin” assigned to every electron. That is, the spin is considered to be
a characteristic property (a kind of angular momentum) of electrons. As a result
of our experiment the property spin is restricted to have only the two values
sC D C„=2 (related to an upward deflection of the electron) and s� D �„=2
(related to a downward deflection of the electron) with respect to a certain
direction. The outcome of a spin measurement in a single event can therefore be
predicted only with a probability of 1=2. This situation is expressed in Quantum
Mechanics by introducing the abstract probability state vector

j  i D 1p
2

� .j '1i C j '2i/ (1.2)

in a two-dimensional spin space. It consists of a superposition of the eigenvector

j '1i D .1; 0/ (1.3)

related to the eigenvalue C1, and the eigenvector

j '2i D .0; 1/ (1.4)

related to the eigenvalue �1. Both eigenvalues and eigenvectors are eigenvalues
and eigenvectors of Pauli’s spin matrix

†1 D
�
1 0

0 �1
�

D j '1ih'1 j � j '2ih'2 j (1.5)
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(please, note that j ˛ihˇ j represents the dyadic product of both vectors j ˛i and
j ˇi!). Hence, the possible spin values are the eigenvalues of the spin operator

S D „
2
†1 : (1.6)

Equation (1.2) is the complete characterization of the electron with respect to
its two possible spin values in the experiment considered above. Calculating
the scalar product of the state vector (1.2) with itself (or, better, calculating the
corresponding scalar product of the projections of j  i onto the two orthogonal
subspaces defined by j '1i and j '2i) will provide us with the probabilities related
to each of the two possible spin values. This is how we express quantitatively
(i.e., in terms of probabilities) our experimental experience: Sending single
electrons through an inhomogeneous magnetic field will result in a random
deflection of the electrons up and down.

However, probabilities are of less importance in classical physics. They
are mostly considered in conjunction with uncertainties of measurements in
real experiments, uncertainties in the determination of initial- or boundary
conditions, and in conjunction with uncertainties regarding the knowledge of
material parameters. But in Chap. 5 we will introduce special stochastic sources
and interaction mechanisms to demonstrate the principal importance of prob-
ability statements already in classical physics. Probabilities should therefore
be accepted as objectively measurable quantities (e.g. in the sense of an
observable empirical probability within a classical event space) not only in
Quantum Mechanics but general in physics.

2. In contrast to the classical physics of a point mass, Quantum Mechanics and
classical Electrodynamics are characterized by the fact that both these theories
are formulated in terms of abstract and not directly observable states/fields.
This necessarily requires a “translation” of the respective states/fields into
measurable quantities such as probabilities, currents, energy fluxes, intensities,
etc. This conceptual difference results also in an essential difference regarding
the description of comparable interaction processes. The different scattering
behaviour of particles and fields on a hard sphere and the difference in the
probabilities measured in the quantum mechanical Bell’s experiment and its
classical counterpart are two examples which will be discussed in detail from
this point of view. As a result of this discussion, it turns out that the probabilities
of the quantum mechanical Bell’s experiment may alternatively be obtained
from the superposition of two nondisjoint substates which are not entangled!
That is, it can be traced back to the same cause we already know from the
quantum mechanical double-slit experiment. In so doing, it is shown in Chap. 5
that there is no need to add Bell’s experiment to Feynman’s quote mentioned
before. Moreover (and may be even more important), it is thus demonstrated that
entangled states can already be introduced to describe corresponding probability
experiments with classical objects.
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3. It may be of some advantage to bring eigenvalue problems into a source picture.
This is what I already called the “source picture” of the Fourier series in the
foregoing section. Regarding Quantum Mechanics, it expresses the fact that a
state of a certain object at a former time may be considered as the source of the
state of the object at a later time. According to this understanding of eigenvalue
problems the solution of the time independent Schrödinger’s equation for the
hydrogen atom, for example, provides us “only” with the abstract mathematical
model of an isolated hydrogen atom and its inner degrees of freedom. Only if
applying a certain source to this object, or if imbedding it into a real environment
that results in a certain interaction will bring the object “hydrogen atom” to
real physical life. Introducing corresponding sources into Quantum Mechanics
represents just a little formal change. In textbooks this is often prosaically called
the “preparation of an initial state”. However, if consequently introducing such a
source picture it becomes clear from the very beginning that Causality applies
also to Quantum Mechanics. The opposite position, i.e., the abandoning of
Causality in Quantum Mechanics is sometimes discussed in the literature.

I hope, on the one hand, that the reader will not be deterred by this lengthy
and quite personally formulated Prologue. But, on the other hand, it represents my
justification for writing this book and may possibly support the understanding of
some of the discussions that can be found in the following chapters. May this book
be regarded as a proposal for the discussion of a common mathematical structure of
our physical experience, and as a discussion of the importance of Green’s functions
to achieve this goal. And, at the very end of this Prologue (and being fully aware
of the possibility that I by myself have to take a good look in the mirror!) I cannot
refrain from making the following remark: Newton’s statement physics, beware of
metaphysics has not lost its importance even in our days!



Chapter 2
Green’s Functions of Classical Particles

From some things we have to distance ourself to approach them

The simple harmonic oscillator is of importance in different fields of physics.
Beside the advantage of a complete analytical treatment this object can be used with
benefit to study the conceptual differences between classical physics and Quantum
Mechanics, for example. We will come back to this aspect in the last chapter of
this book. However, the simple harmonic oscillator is considered in this chapter
exclusively from the well-known position of classical physics. Among other things,
we will derive the related Green’s function. This will enable us to corroborate
some of the aspects addressed from a more general position in the Prologue with
first examples. The Green’s function of the simple harmonic oscillator contains as
a limiting case the Green’s function of a point mass that moves forceless, on an
inclined plane, or that undergoes a free fall. In a next step we consider the Green’s
function of the damped harmonic oscillator and study its behaviour if an impressed
periodic source is applied. The Green’s function of the damped harmonic oscillator
contains the Green’s function of the simple harmonic oscillator and the Green’s
function related to the motion of a point mass in the presence of friction as limiting
cases.

After looking at these simple physical situations we turn toward the so-called
“Lippmann-Schwinger equation” and its iterative solution. In so doing, it is
demonstrated that the Green’s functions of the forceless point mass and the simple
harmonic oscillator can be used to get a first approximation of the Green’s functions
related to the motion of a point mass in the presence of a weak friction, and to
the weakly damped harmonic oscillator. The Green’s function of the forceless point
mass in combination with the Lippmann-Schwinger equation is used moreover to
determine the Green’s function of the simple harmonic oscillator. The discussion of
the “observable mass” in the context of the motion of a point mass in the presence
of friction will allow us to illustrate a basic aspect behind the renormalization
procedure in Quantum Field Theory already at this point.
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T. Rother, Green’s Functions in Classical Physics, Lecture Notes
in Physics 938, DOI 10.1007/978-3-319-52437-5_2

15



16 2 Green’s Functions of Classical Particles

All the Green’s functions are derived again but on a more systematic way in a
separate section. The important Kramers-Kronig relation, that holds for the Fourier
transform of the Green’s function of the damped harmonic oscillator, is considered
in the last part of this section.

The subsequent section deals with the temporal boundary value problem of a
simple harmonic oscillator and its description in terms of “inner states of freedom”
of a corresponding “super oscillator”. The “source picture” of the Fourier series, that
was already mentioned in the Prologue, is introduced and discussed in this context.

The next section starts with the description of a few simple interaction processes
by use of the Green’s function formalism. This is followed by solving the more
complex problems of particle scattering on a rigid sphere and the Kepler problem.
Both these problems are solved by employing the Green’s function of the simple
harmonic oscillator in polar coordinates. With these two examples we intend to
build already in this chapter a bridge to the problem of plane wave scattering on a
sphere that will be discussed in detail in Chap. 4.

2.1 The Simple Harmonic Oscillator

2.1.1 Classical Consideration

The Lagrangian

L.x; Px/ D 1

2
m Px2 � 1

2
k x2 (2.1)

is used as a starting point for our treatment of the simple harmonic oscillator.
m represents the mass, and k denotes the spring constant. Applying Hamilton’s
action principle we get the corresponding Euler-Lagrange equation, and, finally,
the equation of motion of the “state function” x.t/. According to Hamilton’s action
principle the first variation ıW of the action W must vanish. The action itself is
expressed by the definite integral

W D
Z t2

t1

L.x; Px/ dt : (2.2)

The boundary values x.t1/ and x.t2/ are assumed to be known, and, therefore, kept
fixed in the variation procedure. The resulting Euler-Lagrange equation reads

@L

@x
� d

dt

@L

@Px D 0 : (2.3)
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Applying this equation to the Lagrangian (2.1) yields the well-known equation of
motion of the simple harmonic oscillator:

m
d2x.t/

dt2
C k x.t/ D 0 : (2.4)

This equation can be rewritten into

d2x.t/

dt2
C !2 x.t/ D 0 ; (2.5)

where !2 is given by

!2 D k

m
: (2.6)

x.t/ D A � cos!t C B � sin!t (2.7)

is its general periodic solution. x.t/ allows for a complete description of the
behaviour of the simple harmonic oscillator once the amplitudes A and B are known.

These amplitudes are usually calculated from the initial values

x.t1 D 0/ D x1 (2.8)

and
�

dx.t/

dt

�
t1D0

D v1 ; (2.9)

i.e., the position and velocity at the initial time t1 D 0. We can choose any other
time as the initial time, of course. But in what follows, let us use w.l.o.g. t1 D 0 as
the initial time. Then

x.t/ D x1 � cos!t C v1

!
� sin!t : (2.10)

The two limiting cases

• v1 D 0 I x1 ¤ 0

• v1 ¤ 0 I x1 D 0

result in particularly simple expressions for the motion of the simple harmonic
oscillator.
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All this is well-known and need no further explanation. However, according
to the action principle it seems to be more appropriate to fix the position at two
different times, and to calculate the amplitudes A and B from these two boundary
conditions. In a corresponding experiment we would have to measure the position
of the oscillator at two different times, or, equivalently, the two times the oscillator
will take up two predefined positions within one period. According to the problem
with the measurement of the velocity at a fixed time and a fixed position that was
posed in the first section of the Prologue the usage of the boundary values x.t1/ D x1
and x.t2/ D x2 would fit much better into the experimental situation. Then

A D x1 sin!t2 � x2 sin!t1
sin!.t2 � t1/

(2.11)

and

B D x2 cos!t1 � x1 cos!t2
sin!.t2 � t1/

: (2.12)

Measurements at times !.t2 � t1/ D n� ; n D 0; 1; 2; � � � should obviously be
avoided. This problem seems meaningless if using the initial position and the initial
velocity, as discussed at the beginning. But the problem has only been shifted since
this initial velocity must be determined at some point from position measurements
at two different times. Inserting (2.11) and (2.12) into (2.7) yields

x.t/ D x1 � sin!.t2 � t/ C x2 � sin!.t � t1/

sin!.t2 � t1/
(2.13)

as the solution of the simple harmonic oscillator if we have measured its position at
two different times. A possible definition of an initial velocity may be obtained by
comparing (2.7) and (2.12) with (2.10): The “initial velocity” v1 is the assumed
velocity at t D 0 that results in the two positions x1 and x2 at the later times
t1 � t and t2 > t1, i.e.,

v1 WD ! � x2 cos!t1 � x1 cos!t2
sin!.t2 � t1/

: (2.14)

This is something like a “non-differential” definition of an initial velocity based on
position measurements at two different times. If t1 D t D 0 and the rest position
x1 D 0 is used as the starting point (2.14) becomes simply

v1 D ! � x2
sin!t2

: (2.15)

In what follows, the initial velocity is considered as a parameter of an elastic
collision that acts at a certain time on the oscillator at rest—thus resulting in a
change of its state of motion. That ! is independent of the initial values is another
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interesting, although well-known property of the simple harmonic oscillator. This
allows for the determination of the mass m once the spring constant k and ! are
known, for example. But, now, let us consider the simple harmonic oscillator from
the point of view of Green’s functions.

2.1.2 Green’s Function, Green’s Theorem, Causality,
and Reciprocity

Using the elastic collision between two point masses at time t D 0 is only one
possibility to accomplish an initial velocity. However, let us disregard the specific
realization of an initial velocity in what follows. It is considered only as a somehow
given, impressed source for the observed motion of the harmonic oscillator. That is,
it is assumed that without any such source the oscillator would simply rest at x D 0.
In other words: There is no smoke without a fire. Instead, we intend to express the
state of motion x.t/ of the oscillator by relation

x.t/ D
Z tC

0

G.t; t0/ � �.t0/ dt0 (2.16)

once the source �.t/ is given. G.t; t0/ is the Green’s function we are looking for.
It relates the given source �.t0/ to the observed effect x.t/ at observation time t >
t0. The upper index of integration tC shall indicate that the time integration must
be performed up to t C � with � representing an arbitrary small but positive real
number. This is necessary to take the integral property of the Dirac’s delta function
and Causality into account, as we will see shortly. The Green’s function itself is a
function that depends only on the observation time t, and on the time t0 the source is
acting on the oscillator. Unless otherwise specified, t0 in G.t; t0/ will always denote
the source time and t the observation time, in this order.

Causality in this context expresses our (not only) physical experience that an
effect can never be observed before its cause. Regarding the Green’s function we
therefore require the fulfillment of the two additional conditions

G.t; t0/ D 0 I t < t0 (2.17)

and

@G.t; t0/
@t

D 0 I t < t0 : (2.18)

To derive expression (2.16) we start from the Lagrangian

L.x; Px; �/ D 1

2
m Px2 � 1

2
k x2 C �.t/ � x (2.19)
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that contains the impressed source �.t/ linearly in x (and only such linear problems
are of our interest throughout this book). From the Euler-Lagrange equation (2.3) we
thus get in a straightforward way the following inhomogeneous equation of motion:

m � d2x.t/

dt2
C k � x.t/ D �.t/ : (2.20)

The equation

m � @
2G.t; t0/
@t2

C k � G.t; t0/ D ı.t � t0/ (2.21)

is assumed to hold for the corresponding Green’s function. That is, the inhomogene-
ity in Eq. (2.20) is replaced by an elementary source at the initial time t0. Since any
real source may be expressed by a superposition of several elementary sources the
effect of any linear problem in the presence of a real source can also be described
by a superposition of all the effects that result from each elementary source. This is
the actual meaning of the integral relation (2.16).

Green’s theorem is one of the important mathematical tools we will apply again
and again in this book. Regarding the time dependent problems considered in this
chapter it is simply given by

Z t2

t1

�
‰.t/ � d2ˆ.t/

dt2
� ˆ.t/ � d2‰.t/

dt2

�
dt D

Z t2

t1

d

dt

�
‰.t/ � dˆ.t/

dt
� ˆ.t/ � d‰.t/

dt

�
dt D

�
‰.t/ � dˆ.t/

dt
� ˆ.t/ � d‰.t/

dt

�t2

t1

: (2.22)

‰.t/ and ˆ.t/ are any two continuous functions of time. In Chap. 3, when dealing
with classical fields, Green’s theorem becomes a little bit more complicate since we
have to take surface- as well as volume integrals additionally into account. However,
some of the corresponding aspects can already be discussed at this place in a more
simple way.

One of these aspects is concerned with a property that can be derived from
Green’s theorem and the requirement of causality. It is called Reciprocity. Regard-
ing all the temporal problems considered in this chapter Reciprocity characterizes
the behaviour of the Green’s function if interchanging observation- and source time.
It is expressed by the identity

G.t; t0/ D G.�t0;�t/ (2.23)
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(please, note that on the right-hand side of this identity �t and �t0 are now
the source- and observation times, in this order). Equation (2.23) is intuitively
understandable since t > t0 on the left-hand side must become �t0 > �t on the
right-hand side, due to the requirement of Causality. To prove identity (2.23) we
start from the two equations

@2G.t; t0/
@t2

C !2 G.t; t0/ D ı.t � t0/ (2.24)

and

@2G.�t;�t00/
@t2

C !2 G.�t;�t00/ D ı.t � t00/ ; (2.25)

where we have chosen m D 1 for simplicity. Both of these equations are reversible
with respect to time reversal. Next, we consider the integral

Z t00C

0

�
G.t; t0/ � @

2G.�t;�t00/
@t2

� G.�t;�t00/ � @
2G.t; t0/
@t2

�
dt (2.26)

of Green’s theorem. Using (2.24), (2.25), and the identity

G.t; t0/ � @
2G.�t;�t00/

@t2
� G.�t;�t00/ � @

2G.t; t0/
@t2

D
@

@t

�
G.t; t0/ � @G.�t;�t00/

@t
� G.�t;�t00/ � @G.t; t0/

@t

�
(2.27)

we get

G.t00; t0/ � G.�t0;�t00/ D
�

G.t; t0/ � @G.�t;�t00/
@t

� G.�t;�t00/ � @G.t; t0/
@t

�tDt00C

tD0
: (2.28)

The expression in the square brackets on the right-hand side becomes identical zero,
due to the requirement of Causality (see also Fig. 2.1). Thus we have confirmed
the expression (2.23) of Reciprocity. We will come back to this derivation when

−t′′ −t −t′ 0 t′ t t′′

Fig. 2.1 Time bar with the different observation and source times used in the derivation of the
Reciprocity property. t0 represents the source time and t00 the observation time on the positive time
axis. In contrast, �t00 represents the source time and �t0 the observation time on the negative time
axis
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dealing with the damped harmonic oscillator. Reciprocity may then be expressed
more generally by using the adjoint Green’s function since reversibility with respect
to time reversal does not holds for this object.

If replacing the first equation of motion (2.24) of the Green’s function by
equation (2.20) in the above given derivation we get

x.t00/ D
Z t00C

0

G.t00; t/ � �.t/ dt �
�

x.t/ � @G.�t;�t00/
@t

� G.�t;�t00/ � @x.t/

@t

�tDt00C

tD0
(2.29)

as an expression for the solution of the simple harmonic oscillator. Taking again
Causality into account and assuming homogeneous boundary conditions for both
quantities x.t/ and dx.t/=dt at the lower boundary t D 0 we end up with
representation (2.16). All we need to do is to replace t by t0 and t00 by t. Our
call for homogeneous conditions at t D 0 seems to contradict the fact that a
unique solution of the equation of motion requires a known initial position and
a known initial momentum, both related to inhomogeneous boundary conditions.
But we will see later on in Sect. 2.1.5 that these initial values can be replaced by
appropriate sources used in relation (2.16). We will face the equivalence between
inhomogeneous boundary conditions and sources frequently in this book.

Now, let us consider relation (2.16) again but from a somewhat different point of
view. Starting from the assumption that only equation (2.21) of the Green’s function
is given we may ask for the equation of motion of x.t/ that must hold to coincide
with relation (2.16) for a given source �.t/. To this end, let us introduce the inverse
G �1.t; t0/ of the Green’s function G.t; t0/ by the definition

Z tC

0

G �1.t; Nt / � G. Nt; t0/ dNt WD ı.t � t0/ : (2.30)

Comparing this definition with (2.21) we thus get

G �1.t; t0/ D
�

m � @
2

@t2
C k

�
ı.t � t0/ : (2.31)

It is straightforward to prove the correctness of this expression by insertion
into (2.30), and by taking the definition

Z 1

�1
f .x/ � ı.x � x0/ dx WD f .x0/ (2.32)
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of Dirac’s delta function into account. Please, note that one consequence of this
definition is Œ1=x� as the unit of measure of Dirac’s delta function. Next, let us
multiply relation (2.16) by G �1.t00; t/ and integrate from t D 0 to t D t00C
afterwards,

Z t00C

0

G �1.t00; t/ � x.t/ dt D
Z t00C

0

G �1.t00; t/ � G.t; t0/ � �.t0/ dt0 dt : (2.33)

If we revert to (2.31), and if we finally replace t00 by t we end up with (2.20) as
the equation of motion of x.t/. This derivation avoids the usage of Green’s theorem.
On the other hand, we have lost control over the boundary- or initial conditions.
But this is not really a disadvantage since we intend to replace these conditions
by corresponding impressed or induced sources, as already mentioned above. The
Lagrangian

L.G; PG; ı/ D 1

2
m PG 2.t; t0/ � 1

2
k G 2.t; t0/ C ı.t � t0/ � G.t; t0/ (2.34)

can be considered in this context as the generating function of the equation of
motion of the Green’s function in the presence of the external but elementary source
ı.t � t0/. In so doing we have to replace @L=@x and @L=@Px in the Euler-Lagrange
equation (2.3) by @L=@G and @L=@ PG. Then, (2.20) represents the corresponding
equation of motion of any function x.t/ that meets relation (2.16) with �.t/
representing a given source.

There exists an alternative way to define the equation of motion of the Green’s
function from a Lagrangian without the elementary source that should be mentioned
here. Instead of (2.34) we can choose

QL.G; PG/ D L.G; PG/ � H.t � t0/ (2.35)

with L.G; PG/ according to

L.G; PG/ D 1

2
m PG 2.t; t0/ � 1

2
k G 2.t; t0/ ; (2.36)

i.e., without Dirac’s delta function as an external source. H.t � t0/ denotes the
Heaviside function defined by

H.t � t0/ WD
�
1 I t � t0 > 0
0 I t � t0 < 0

: (2.37)

Its first derivative with respect to time t yields Dirac’s delta function ı.t � t0/. This
function ensures that nothing of physical relevance happens before the source is
acting on the oscillator. Using this Lagrangian in the Euler-Lagrange equation (2.3)
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we thus get

@L

@G
� d

dt

@L

@ PG D
�
@L

@ PG
�

tDt0
� ı.t � t0/ : (2.38)

With the definition of
�
@L

@ PG
�

tDt0
WD � 1 (2.39)

as an elementary momentum acting at time t0 we have

@L

@G
� d

dt

@L

@ PG D � ı.t � t0/ : (2.40)

Inserting (2.36) provides again the equation of motion (2.21) of the Green’s
function.

We are now in the possession of a quite interesting relation between the Green’s
function and the solution x.t/ of the state of motion. But, unfortunately, we don’t
know the Green’s function itself. As long as an explicite expression of the Green’s
function is not known (2.16) represents only a formal relation. The solution of the
differential equation (2.21) by taking the additional condition

lim
�!0

G.t D t0 C �; t0/ D 0 (2.41)

into account is therefore our objective in what follows.

2.1.3 Determination of the Green’s Function by Trying

Equation (2.21) is a quite simple differential equation with sine- and cosine
functions as the two linearly independent solutions of the homogeneous equation.
We are therefore able to determine G.t; t0/ by “skillful trying”. The initial time
is again set to t0 D 0 for simplicity. To consider an arbitrary initial time t0 we
simply have to replace t by t � t0 in the final result. Because of the additional
condition (2.41) only the sine function will be shortlisted. If multiplying this
function by the Heaviside function H.t/ we are already in agreement with Causality.

G.t; 0/ D A � sin!t � H.t/ (2.42)
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is therefore a reasonable ansatz for the Greensfunction of Eq. (2.21). The so far
unknown coefficient “A” can be determined as follows: We insert (2.42) into (2.21)
and take into account that

dı.t/

dt
D � 1

t
� ı.t/ (2.43)

holds for the first derivative of Dirac’s delta function. This is a consequence of the
definition

Z 1

�1
f .x/ � dı.x/

dx
dx WD �

�
df .x/

dx

�
xD0

(2.44)

of the derivative of Dirac’s delta function. Thus we get

@G.t; 0/

@t
D A � ! � cos!t � H.t/ C A � sin!t � ı.t/ (2.45)

for the first derivative, and

@2G.t; 0/

@t2
D � m!2 � A � sin!t � H.t/ C (2.46)

2m! � A � cos!t � ı.t/ � m � A � sin!t

t
� ı.t/

for the second derivative of the Green’s function. Applying these two derivatives in
Eq. (2.21) gives

m � @
2G.t; 0/

@t2
C k � G.t; 0/ D A � sin!t � H.t/ � �k � m!2

� C

ı.t/ � A � m �
�
2 ! cos!t � sin!t

t

�
: (2.47)

The first term on the right-hand side becomes identical zero because of (2.6). “A”
can be determined from the second term on the right-hand side since the expression
A � m � �2 ! cos!t � sin!t

t

�
must provide 1 if t tends to zero. Applying L’Hospital’s

rule gives

A D 1

m!
: (2.48)

The Green’s function of the simple harmonic oscillator reads therefore

G.t; 0/ D sin!t

m!
� H.t/ ; (2.49)
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or, if we consider an arbitrary initial time t0,

G.t; t0/ D sin!.t � t0/
m!

� H.t � t0/ : (2.50)

The integration of the equation of motion (2.21) by an infinitesimal region across
the source time provides another possibility to determine “A”. This provides

�
@G.t; 0/

@t

�tDC�

tD��
C !2 �

Z C�

��
G.t; 0/ dt D 1

m
: (2.51)

From (2.17) and (2.41) it follows that the integral expression on the left-hand side
is identical zero, giving

�
@G.t; 0/

@t

�tDC�

tD��
D 1

m
: (2.52)

Then, from (2.45) and if taking Œsin!t � ı.t/�tD0 D 0 into account, (2.48) follows in
a straightforward way. But we see moreover that the first derivative of the Green’s
function m � G.t; t0/ with respect to the observation time t is discontinous by an
amount of 1 at the source time t0 ! It should be also noted at this point that the
somewhat shirtsleeve treatment of Dirac’s delta function as an ordinary function
will be practiced frequently throughout the book and is well-known to physicists,
much to the annoyance of the mathematicians.

Interestingly, in some textbooks I have found the expression

G.t; t0/ D sin!jt � t0j
2m!

(2.53)

instead of (2.50) for the Green’s function of the simple harmonic oscillator. This
is also a solution of the equation of motion (2.21), as one can convince oneself by
taking the weak derivative

djtj
dt

D H.t/ � H.�t/ (2.54)

of the absolute value function into account. Its second derivative produces the factor
1=2 in (2.53). But on the other hand we have to state that this solution does not
agree with identity (2.23), and, therefore, not with the requirement of Causality. That
is, interchanging source and observation time that way should provide zero, as we
have already discussed. The relation between Causality and the time structure of the
Green’s function becomes even more obvious if it is derived by the mathematically
better founded Fourier transform method.
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2.1.4 Determination of the Green’s Function by Applying
the Fourier Transform Method

The Fourier transform F. N!/ of the function f .t/ is defined according to

F. N!/ WD
Z 1

�1
f .t/ � e�i N!t dt : (2.55)

The inversion formula reads

f .t/ D 1

2�

Z 1

�1
F. N!/ � ei N!t d N! : (2.56)

The Fourier transform of the derivative of f .t/ with respect to t is given by the
multiplication of the Fourier transform F. N!/ by i N!. Furthermore, Dirac’s delta
function may be expressed by

ı.t � t0/ D 1

2�

Z 1

�1
ei N!.t�t0/ d N! : (2.57)

The application to the equation of motion

@2G.t; t0/
@t2

C !2 � G.t; t0/ D 1

m
� ı.t � t0/ (2.58)

provides therefore the algebraic equation

G. N!; t0/ D 1

m
� e�i N!t0

!2 � N!2 (2.59)

for the Fourier transform of the Green’s function. To move the zero points of the
denominator away from the real axis into the upper complex N!-plane we add the
expression i � N!. � therein represents again a small but positive real quantity that
will be set to zero at the end of the analysis. With

�2 D !2 C i � N! (2.60)

and the inversion formula (2.56) we may thus write

G.t; t0/ D � 1

2�m

Z 1

�1
ei N!.t�t0/

N!2 � �2
d N! D

� 1

2�m

Z 1

�1
ei N!.t�t0/

. N! � �1/ � . N! � �2/
d N! (2.61)
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Fig. 2.2 Path of integration
in the upper complex N!-plane
and positions of the zero
points of the denominator

Im [ω̄]

Re [ω̄]

C

∞

∞

−∞ � κ1�κ2

for the Green’s function in its original time domain. The zero points of the
denominator are given by (see also Fig. 2.2)

�1 D
r
!2 � �2

4
C i

�

2
(2.62)

�2 D �
r
!2 � �2

4
C i

�

2
: (2.63)

The contribution of the upper semicircle (ImŒ N!� ! C1) disappears so that

I
C

d N! � � � D
Z 1

�1
d N! � � � (2.64)

holds. From the two simple poles �1=2 and the application of the residual theorem
we obtain

Z 1

�1
ei N!.t�t0/

. N! � �1/ � . N! � �2/
d N! D 2�i �

"
ei!.t�t0/

2!
� e�i!.t�t0/

2!

#
(2.65)

in the limit � ! 0. From Euler’s formula we get finally

G.t; t0/ D sin!.t � t0/
m!

: (2.66)

If t � t0 < 0 would have been chosen, then we would have to close the integration
path in the lower complex N!-plane. Then the contribution of the lower semicircle
ImŒ N!� ! �1 would disappear. But since there are no singularities in the lower
complex N!-plane we would get zero for the remaining integral along the real N!-
axis. That is, the special choice of Ci� N! in (2.60) allowed us to derive an expression
for the Green’s function that is in agreement with Causality. To avoid a nonzero
expression for the Green’s function in the time domain if t < t0 we have to multiply
the solution (2.66) by the Heaviside function H.t � t0/. Thus we end up again
with (2.50).
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Fig. 2.3 Path of integration
in the upper complex N!-plane
and positions of the zero
points of the denominator
related to the Fourier
transform of Eq. (2.67)
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There exist another way to move the singularities of the Fourier transform of the
Green’s function away from the real axis. We will consider this possibility already
at this place since it is also of some importance in Quantum Field Theory to describe
particles and antiparticles in conjunction with the Klein-Gordon- and Feynman
propagator, for example. Moreover, it emphasizes again the interplay between the
temporal boundary conditions based on our physical experience of Causality and the
solution of the underlying equation of motion we are looking for. Instead of (2.21)
we are now considering the modified equation

@2G�C.t; t
0/

@t2
C �

!2 C i �
� � G�C.t; t

0/ D 1

m
� ı.t � t0/ : (2.67)

� is again a small but positive real quantity that will be finally set to zero. The two
simple poles in the inversion formula (2.61) are now approximately given by (see
Fig. 2.3)

˙
h
! C i

�

2 !

i
D ˙ �� : (2.68)

The region of integration that results from the requirement of Causality is again the
upper complex N!-plane. There we have the single pole C�� that yields

G C
�C
.t; t0/ D � i

2m!
� ei! .t�t0/ (2.69)

for the Green’s function in the time domain. The upper “C-sign” shall indicate that it
results from the pole C�� . Multiplying this result by the Heaviside function provides

G C
�C
.t; t0/ D � i

2m!
� ei! .t�t0/ � H.t � t0/ : (2.70)

But this solution is identical with the expression that results from the first term on
the right-hand side of (2.65), and, therefore, is only half of the truth. This can simply
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be proven by inserting (2.70) into Eq. (2.21). Taking identity

f .t/ � ı.t/ D f .0/ � ı.t/ (2.71)

and relation (2.43) into account, and applying L’Hospital’s rule to the term that
contains the derivation with respect to time of Dirac’s delta function gives

@2G C
�C
.t; t0/

@t2
C !2 � G C

�C
.t; t0/ D 1

2
� ı.t � t0/ : (2.72)

On the other hand, integration in the lower N!-plane with the single pole ��� provides

G �
�C
.t; t0/ D i

2m!
� e�i! .t�t0/ � H.t0 � t/ : (2.73)

Inserting this expression again into Eq. (2.21) yields the other half of the solution

@2G �
�C
.t; t0/

@t2
C !2 � G �

�C
.t; t0/ D � 1

2
� ı.t � t0/ ; (2.74)

i.e.,

G�C.t; t
0/ D G C

�C
.t; t0/ � G �

�C
.t; t0/ D � i

2m!
� ei! jt�t0 j (2.75)

is indeed a possible solution of the equation of motion of the Green’s function of
the simple harmonic oscillator. But, unfortunately, this Green’s function is not in
agreement with our physical experience of Causality and Reciprocity since it is
nonzero if we have t < t0, and since it is symmetric if interchanging source- and
observation time. On the other hand, in Quantum Field Theory Green’s functions
of the type G �

�C
.t; t0/ are used to describe the motion of antiparticles “backwards

in time” as it is sometimes called in the literature. And, surprisingly, this is in
agreement with corresponding scattering experiments. But let us come back to the
simple harmonic oscillator. The missing part of the “classical” solution may be
obtained from the equation

@2G C
��
.t; t0/

@t2
C �

!2 � i �
� � G C

��
.t; t0/ D 1

m
� ı.t � t0/ : (2.76)

The only singularity in the upper complex plane that contributes to the solution we
are looking for is now located in the second quadrant. The corresponding part of the
Green’s function is then given by

G C
��
.t; t0/ D i

2m!
� e�i! .t�t0/ � H.t � t0/ : (2.77)
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Substituting this expression in the equation of motion (2.21) provides

@2G C
��
.t; t0/

@t2
C !2 � G��.t; t

0/ D 1

2
� ı.t � t0/ : (2.78)

The sum of G C
�C
.t; t0/ and G C

��
.t; t0/ is again identical with (2.50).

2.1.5 First Examples of Simple Sources

After the successful determination of the Green’s function of the simple harmonic
oscillator we are now asking for first examples of sources to see the integral rela-
tion (2.16) in action. As already discussed in the Prologue, we will generally classify
the sources into induced and impressed sources according to the terminology used
in Electrodynamics. Induced sources are sources which can be traced back to the
interaction of the considered object with other objects from the same or other
object spaces. Replacing such an interaction by a corresponding source was our
more general understanding of Huygens’ principle. A quite simple example of an
impressed source represents the reflection of a point mass from an ideal elastic
wall. It will be discussed in detail later on in this chapter. The light pressure on
a rigid sphere—a problem that was solved in 1909 by Debye by use of Mie’s theory
of light scattering is another example of an induced source that results from the
interaction between objects of different object spaces. On the other hand, impressed
sources are a priori given sources which act in such a way on the considered
object that the caused effect coincides with our experimental experience. That’s
the justification for using this source. The motion of a point mass on an inclined
plane and its free fall caused by the gravitational force is an example of such an
impressed source that will also be discussed in detail in what follows. A theoretical
description of this gravitational source is given on the deeper level of General
Relativity. But this is outside the scope of this book. Other examples of impressed
sources are known from macroscopic Electrodynamics. This is a continuum theory
of the fields generated by appropriate sources. A description of the nature of
these sources requires a microscopic theory of charges and currents. A similar
situation is also known from Continuum Mechanics if the material parameters
are determined from corresponding macroscopic experiments rather than from
an underlying microscopic theory. According to this understanding the following
sources are considered to be impressed.

The two limiting cases subsequent to Eq. (2.10) result from the two sources

�.t0/ D m � x1 � dı.t0/
dt0

(2.79)
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and

�.t0/ D m � v1 � ı.t0/ D p1 � ı.t0/ : (2.80)

Regarding the first source we have to consider (2.44). p1 in the second source
represents the initial momentum. If adding both sources

�.t0/ D p1 � ı.t0/ C m � x1 � dı.t0/
dt0

(2.81)

we thus get from (2.16) the state of motion (2.10) for a given initial position and
momentum, as known from the classical treatment. The attentive reader would
actually have to raise a protest at this point! The representation (2.16) of the state
of motion was derived in Sect. 2.1.2 by assuming homogeneous initial conditions.
In other words: Eq. (2.20) and the requirement of homogeneous initial conditions
seem to be in conflict with the sources (2.79) and (2.80) since the expression within
the square brackets in (2.29) is nonzero for inhomogeneous initial conditions. But it
is exactly this term that is generated by the source (2.81). Based on relation (2.16)
and by use of the sources (2.79)–(2.81) we are therefore able to provide the state
of motion of the simple harmonic oscillator with definite initial values. However,
it should be mentioned that in the literature representation (2.16) is often restricted
to sources which are in agreement with homogeneous initial conditions. That is,
Eq. (2.16) is considered to provide only a special solution of the inhomogeneous
equation. The general solution of the homogeneous equation is added afterwards,
and the total solution is fitted to potentially given inhomogeneous initial conditions.
But it was the main goal of this section to demonstrate that a definite initial state
may also result from relation (2.16) and corresponding sources.

The periodic external excitation with frequency Q! of the simple harmonic
oscillator given by the source

�.t0/ D p1 � ! � cos Q!t0 (2.82)

is also of some interest. Q! may differ from the frequency ! of the oscillator, in
general. Note also that the frequency ! of the oscillator was incorporated into this
source for dimensional reasons. Let us further assume that this source will act on
the oscillator up to the observation time t. From (2.16) and (2.50) we thus get

x.t/ D p1
m

�
Z t

0

sin!.t � t0/ � cos Q!t0 dt0 : (2.83)

Evaluation of the integral provides the final solution

x.t/ D p1
m

� !

.!2 � Q!2/ � .cos Q!t � cos!t/ : (2.84)
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for the state of motion as one can convince oneself in a straightforward way
by inserting this expression and the source (2.82) into (2.20). And, if t D 0

is considered, we see that homogeneous initial conditions hold for this solution.
Inhomogeneous initial conditions can be considered by adding the sources (2.79)–
(2.82) appropriately. An example of this situation is the Kepler problem we consider
in detail later on in this chapter. Moreover, if the external frequency and the
frequency of the oscillator become identical (i.e., if we have Q! D !)

x.t/ D p1
2m

� t � sin!t (2.85)

follows from L’Hospital’s rule. The amplitude is linearly increasing with time, and
if t tends to infinity the system is linearly running into the resonance catastrophe.

2.2 The Damped Harmonic Oscillator

The damped harmonic oscillator provides the opportunity to introduce the “adjoint
problem” or rather the corresponding adjoint Green’s function. Beside the con-
servative force of the simple harmonic oscillator a nonconservative and velocity
dependent force Q D �ˇ � Px must additionally be considered. This force cannot be
derived from a potential. It is used as an inhomogeneity on the right-hand side of the
Euler-Lagrange equation (2.3). This equation results from a generalized Hamilton
principle where only the kinetic energy is varied. The corresponding equations of
motion are then given by

m � d2x.t/

dt2
C ˇ � dx.t/

dt
C k � x.t/ D �.t/ (2.86)

and

m � @
2G.t; t0/
@t2

C ˇ � @G.t; t0/
@t

C k � G.t; t0/ D ı.t � t0/ : (2.87)

To represent the solution again in the form of relation (2.16) the equation of motion

m � @
2 QG.t; t0/
@t2

� ˇ � @
QG.t; t0/
@t

C k � QG.t; t0/ D ı.t � t0/ (2.88)

of the adjoint Green’s function QG is needed. It differs in the negative friction term
from (2.87). The relation between these two Grenn’s functions is therefore given by

QG.t; t0/ D G.�t;�t0/ (2.89)
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if (2.88) and (2.87) are compared. To derive the Reciprocity relation we start from
the integral

Z t00C

0

�
G.t; t0/ � @

2G.�t;�t00/
@t2

� G.�t;�t00/ � @
2G.t; t0/
@t2

�
dt : (2.90)

Taking the equations of motion into account gives

G.t00; t0/ � G.�t0;�t00/ D

ˇ �
Z t00C

0

�
G.t; t0/ � @G.�t;�t00/

@t
C G.�t;�t00/ � @G.t; t0/

@t

�
dt C

�
G.t; t0/ � @G.�t;�t00/

@t
� G.�t;�t00/ � @G.t; t0/

@t

�tDt00C

tD0
: (2.91)

Please, note that m was set to unity for simplicity. Due to Causality and the assumed
homogeneous initial conditions the last term on the right-hand side becomes
identical zero. It remains the expression

G.t00; t0/ � G.�t0;�t00/ D

ˇ �
Z t00C

0

�
G.t; t0/ � @G.�t;�t00/

@t
C G.�t;�t00/ � @G.t; t0/

@t

�
dt : (2.92)

Integration by parts of

Z t00C

0

G.t; t0/ � @G.�t;�t00/
@t

dt D �
G.t; t0/ � G.�t;�t00/

�tDt00C

tD0 �
Z t00C

0

G.�t;�t00/ � @G.t; t0/
@t

dt (2.93)

causes the remaining integral term in (2.92) to disappear. Thus we end up again
with (2.23). However, this cancellation would not have happened if in (2.90) the
original equation of motion (2.87) of the Green’s function with the positive friction
term had been used instead of the adjoint equation (2.88). Because of (2.89) the
Reciprocity relation may also be expressed in a more symmetric form by use of the
adjoint Green’s function according to

QG.t0; t00/ D G.t00; t0/ : (2.94)

Exercise: Derive relation (2.16). Note, that we can proceed in exactly the
same way described above. In (2.90) we simply have to replace the equation of
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motion (2.87) of the Green’s function G.t; t0/ by the corresponding equation of
motion (2.86) of the state of the damped harmonic oscillator.

2.2.1 Determination of the Green’s Function by Applying
the Fourier Transform Method

The Fourier transform of equation (2.87) of the Green’s function is again given by
expression (2.59) with the denominator modified by (2.60). But due to the additional
friction term � is now given by

�2 D !2 C i2� N! ; (2.95)

in contrast to the former expression (2.60). The damping parameter

� D ˇ

2m
(2.96)

is moreover introduced. The two simple poles

�1 D
p
!2 � �2 C i� (2.97)

and

�2 D �
p
!2 � �2 C i� (2.98)

must now been considered in the inversion formula (2.61). In dependence on the
damping parameter � we have to distinguish three different situations. 0 < � < !

represents an underdamped oscillator. The simple poles are located in the first and
second quadrant of the complex N!-plane. � D ! (then we have �1 D �2!) results
in a single pole of second order that is located on the positive imaginary N!-axis.
This describes the critically damped oscillator. For the overdamped oscillator � >
! holds. Now there are two simple poles on the imaginary N!-axis. Applying the
residual theorem we thus get the three expressions

• 0 < � < !:

G.t; t0/ D e� � .t�t0/

m
�

sin
hp
!2 � �2 � .t � t0/

i
p
!2 � �2

� H.t � t0/ (2.99)

• � D !:

G.t; t0/ D e� � .t�t0/

m
� .t � t0/ � H.t � t0/ (2.100)
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• � > !:

G.t; t0/ D e� � .t�t0/

m
�

sinh
hp
�2 � !2 � .t � t0/

i
p
�2 � !2

� H.t � t0/ (2.101)

for the respective Green’s function. With the sources discussed in Sect. 2.1.5 we
get from relation (2.16) the known results for the state of motion of the damped
harmonic oscillator if inhomogeneous initial conditions are given (see Morse and
Ingard (1986), for example). Regarding the underdamped oscillator we observe not
only a decaying amplitude in time but also a shift to a lower frequency compared to
the simple harmonic oscillator. The simple harmonic oscillator, on the other hand,
appears as a limiting case of the damped harmonic oscillator if � tends to zero.
And, according to (2.94), the corresponding adjoint Green’s functions result from
interchanging t and t0 in (2.99)–(2.101).

2.2.2 The Periodically Excited Damped Harmonic Oscillator

If the periodic source

�.t0/ D C � e�i Q!t0 (2.102)

with an arbitrary constant C is acting on a damped harmonic oscillator, then
the oscillator will follow this external excitation after a certain setting time. Its
behaviour may be described in this case by

x.t/ D x0. Q!/ � e�i Q!t ; (2.103)

where x0. Q!/ represents an in general complex-valued amplitude. That is, there will
be in general a phase shift between the external excitation and the caused periodic
motion of the damped harmonic oscillator. If the external source was switched on
at time t0 D �1 we may assume that the oscillator can be found in steady state
for every observation time t > 0. By use of its Green’s function we are now going
to derive an explicite expression of the complex-valued amplitude function of the
steady state motion of the damped harmonic oscillator. For this purpose we employ
once again the Fourier transform of the equation of motion of the corresponding
Green’s function. It reads

G. N!; t0/ D 1

m
� �. N!/ � e�i N!t0 ; (2.104)
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where

�. N!/ D �
!2 � N!2 C i2� N!��1 (2.105)

(please, note that we have to discriminate between the angular frequency Q! of the
external periodic excitation and the variable N! of the Fourier transform). According
to (2.56) we have on the other hand

G.t; t0/ D 1

2�

Z 1

�1
G. N!; t0/ � ei N!t d N! : (2.106)

Thus we get from (2.16), (2.102), and (2.104)

x.t/ D C

2m�
�
Z 1

�1

Z t

�1
�. N!/ � e�it0. N!C Q!/ � ei N!t dt0 d N! (2.107)

as an expression for the state of motion. The integration with respect to t0 provides
Dirac’s delta function ı. N! C Q!/. This results in

x.t/ D QC � �.� Q!/ � e�i Q!t ; (2.108)

where QC D C=2�m. The complex-valued amplitude function reads therefore

x0. Q!/ D QC � �.� Q!/ D QC � �!2 � Q!2 � i2� Q!��1 : (2.109)

Exercise: Show that the same result follows from Eqs. (2.16), (2.99),
and (2.102). If taking t0 D �1 as the lower integration limit the integration
with respect to t0 can be performed in a straightforward way.

Expression (2.109) can moreover be split into real and imaginary parts accord-
ing to

x0. Q!/ D x0
0. Q!/ C i � x00

0. Q!/ ; (2.110)

where

x0
0. Q!/ D QC � .!2 � Q!2/

.!2 � Q!2/2 C 4 �2 Q!2 (2.111)

and

x00
0 . Q!/ D 2 � Q! QC

.!2 � Q!2/2 C 4 �2 Q!2 : (2.112)
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In the limiting case of a vanishing damping constant � the imaginary part becomes
identical with Dirac’s delta function, i.e.,

x00
0 . Q!/ D QC � � � ı.!2 � Q!2/ : (2.113)

This follows from

lim
�!0

�

.!2 � Q!2/2 C �2
D � ı.!2 � Q!2/ (2.114)

as one of the existing representations of this function. The two limiting cases of an
angular frequency Q! of the external excitation that is much higher or much lower
than the oscillators own frequency ! are also of some interest. Then we have

• Q! >> !:

x0
0. Q!/ D �

QC
Q!2 (2.115)

x00
0 . Q!/ D 2 QC �

Q!3 (2.116)

• Q! << !:

x0
0. Q!/ D

QC
!2

D const. (2.117)

x00
0 . Q!/ D 2 QC � Q!

!4
: (2.118)

The imaginary part is always a positive real number in both of these limiting
cases. This is a consequence of the positive sign in the exponent of the external
excitation (2.102). A negative sign in the exponent would result in an always
negative real number of the imaginary part. The complex-valued amplitude function
plays a major role for the modeling of material properties with and without
absorption. This is of importance if we intend to describe the propagation of
microwaves in dielectric media or in light scattering analysis, for example, where
the imaginary part is used to consider the loss of energy.

The real and imaginary parts (2.111) and (2.112) are not independent of each
other. They comply with the so-called “Kramers-Kronig relations”

x0
0. Q!/ D 2

�
� pv

Z 1

0

	 � x00
0 .	/

	2 � Q!2 d	 (2.119)

x00
0 . Q!/ D � 2 Q!

�
� pv

Z 1

0

x0
0.	/

	2 � Q!2 d	 : (2.120)
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“pv” in front of the integral denotes Cauchy’s principal value integration. The
derivation of the Kramers-Kronig relations will be discussed in detail in Sect. 2.5.3.
However, the proof of relation (2.119) in the limiting case of a vanishing damping
constant is straightforward. It follows from the imaginary part (2.113) and relation

ı.!2 � !2n/ D 1

2 !n
� Œı.! � !n/ C ı.! C !n/� (2.121)

—another relation that holds for Dirac’s delta function. The reverse proof that we
get Dirac’s delta function for the imaginary part x00

0 . Q!/ if using x0
0. Q!/ for a vanishing

damping in (2.120) and after integration—albeit more elaborate—is also possible.
And, finally, we may state that the behaviour of the amplitude function in the time
domain can be related to the imaginary part x00

0 . Q!/. If the imaginary part is given by
Dirac’s delta function, then the amplitude function becomes independent of time. On
the other hand, the amplitude function becomes damped in time and in dependence
on the parameter � if the imaginary part takes the shape of a Lorentzian profile, as
known from spectroscopy.

2.3 Basic Motions of a Point Mass

Some basic motions of a point mass are limiting cases of the simple- and
damped harmonic oscillator. The forceless motion, the motion on the inclined plane
(including free fall), and the motion in the presence of friction are the situations
we intend to consider in what follows. Looking at such simple examples is again
aimed at a more detailed corroboration of some of the positions formulated in the
Prologue. But we will also resort to some of these examples when discussing basic
interaction processes and their characterization with respect to energy conservation
by use of the Green’s function formalism.

We go back to the Green’s function (2.50) of the simple harmonic oscillator and
consider the limiting case ! D 0. Applying L’Hospital’s rule this gives the simple
expression

G.t; t0/ D .t � t0/
m

� H.t � t0/ (2.122)

for the Green’s function of a forceless point mass. Its uniform motion with the
constant velocity v1 follows in a straightforward way from our basic relation (2.16)
and the source (2.80) (a primary impact with momentum p1 D m � v1). Thus we get

x.t/ D v1 � t : (2.123)

But we can also use (2.122) to describe the frictionless motion of a point mass
on an inclined plane including the free fall. The corresponding source that has to be
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Fig. 2.4 Geometry of the
inclined plane
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used in (2.16) reads

�.t0/ D FH.t
0/ D m � g � sin ˛ � H.t0/ (2.124)

(see Fig. 2.4). According to this source the gravitational force is switched on at the
initial time t0 D 0 (in so doing, we have to arrange beforehand that the point mass
was positioned at a higher level—on top of the Leaning Tower of Pisa, for example).
It is then acting on the point mass up to the observation time t. ˛ D �=2 corresponds
to the free fall. The distance s (we have y.t/ D h � s.t/ � sin ˛, where s.0/ D 0) the
point mass covers on the inclined plane up to the observation time t is then given by

s.t/ D g sin ˛ �
Z tC

0

.t � t0/ dt0 D g

2
t2 � sin˛ : (2.125)

The well-known result of the free fall follows from ˛ D �=2.
The equation of motion of a point mass in the presence of friction may be

obtained by canceling the linear term in (2.86),

d2x.t/

dt2
C 2 �

dx.t/

dt
D 1

m
� �.t/ : (2.126)

From (2.101) and with ! D 0 we get on the other hand

G.t; t0/ D e�� .t�t0/

m
� sinhŒ� � .t � t0/�

�
� H.t � t0/ D

1

2 � m
�
h
1 � e�2�.t�t0/

i
� H.t � t0/ (2.127)

for the corresponding Green’s function. Applying the source

�.t0/ D 2 � m � v1 � H.t0/ ; (2.128)
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in (2.16) results in the state of motion

x.t/ D v1 � t � v1

2 �
� 	1 � e�2� t



: (2.129)

For larger observation times the state of motion becomes simply

x.t/ D v1 �
�

t � 1

2 �

�
: (2.130)

1=2� is a characteristic time constant of this motion that depends on the coefficient
� of the friction. But (2.129) demonstrates once again the aspect that the initial
velocity at t D 0 is identical zero, as required in the process of the derivation of
relation (2.16) by use of Green’s theorem (see also the discussion subsequent to
Eq. (2.29)).

2.4 Lippmann-Schwinger Equation

The Lippmann-Schwinger equation plays an important role in Quantum Mechanics
where it is used as a starting point to derive iterative solutions for scattering
problems, for example. This section is aimed at the demonstration that this equation
can be introduced and applied with benefit already in classical physics. Among
others, it will allow us to derive expressions for the Green’s functions we have
considered so far by starting from the solution of a more simple situation. Our first
example is concerned with the motion of a point mass in the presence of friction
that was considered right now.

@2G0.t; t0/
@t2

D 1

m
� ı.t � t0/ (2.131)

is the equation for the Green’s function of the unperturbed problem without any
friction. It is assumed that we are already in the possession of its solution (2.122).
On the other hand,

@2G.�t;�t00/
@t2

� 2� � @G.�t;�t00/
@t

D 1

m
� ı.t � t00/ (2.132)

is the adjoint equation of the problem in the presence of friction we intend to solve.
To derive the Lippmann-Schwinger equation we proceed along the same track used
to derive the Reciprocity relation (2.23), or (2.94) as appropriate, that holds for the
damped harmonic oscillator. In so doing, we start from the integral

Z t00C

0

�
G0.t; t

0/ � @
2G.�t;�t00/

@t2
� G.�t;�t00/ � @

2G0.t; t0/
@t2

�
dt : (2.133)
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Because of the additional friction term 2� @G.�t;�t00/=@t in (2.132), and by use of
the Reciprocity relation (2.23) this integral gives

G.t00; t0/ D G0.t
00; t0/ C 2 � m

Z t00C

t0
G0.t; t

0/ � @G.t00; t/
@t

dt : (2.134)

The lower and upper integration limit are a consequence of the product H.t � t0/ �
H.t00 � t/ of the Heaviside functions. Equation (2.134) is already the Lippmann-
Schwinger equation we are looking for. The first term on the right-hand side
represents the known Green’s function of the frictionless problem. On the other
hand, the Green’s function (2.127) of the problem with friction has been obtained
from the Green’s function (2.101) of the overdamped harmonic oscillator if ! was
set to zero. A straightforward calculation (if (2.43), (2.71) as well as L’Hospital’s
rule is taken into account!) shows that (2.127) obeys both the Lippmann-Schwinger
equation (2.134) and the equation of motion (2.132) but with a positive sign in the
friction term instead of the negative sign of its adjoint. It is therefore interesting
to see if this analytical solution can also be obtained from the iterative solution of
the Lippmann-Schwinger equation. For this purpose, let us replace the exponential
function in Eq. (2.127) by the first 4 terms of its Taylor expansion. This reads

G.t; t0/ D 1

m
�
�
.t � t0/ � � .t � t0/2 C 2

3
�2 .t � t0/3 � � � �

�
� H.t � t0/ :

(2.135)

The first iteration of the Lippmann-Schwinger equation (2.134) provides on the
other hand

G.1/.t; t0/ D G0.t; t
0/ C 2 � m

Z tC

t0
G0. Nt; t0/ � @G0.t; Nt/

@Nt dNt : (2.136)

Applying G0 according to (2.122) gives

G.1/.t; t0/ D 1

m
� �.t � t0/ � � .t � t0/2

� � H.t � t0/ : (2.137)

Next, let us replace the unknown Green’s function G.t; t0/ on the right-hand side
of (2.134) by this first iteration. This provides the second iteration

G.2/.t; t0/ D 1

m
�
�
.t � t0/ � � .t � t0/2 C 2

3
�2 .t � t0/3

�
� H.t � t0/ ; (2.138)

and so on. This iteration process actually reflects the Taylor expansion of the
exponential function expŒ�2�.t � t0/� so that we will finally arrive at the analytical
solution (2.127). Now, if choosing (2.80) as the source acting on the point
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mass (2.16) and the Green’s function according to (2.136) yields

x.1/.t/ D v1 � t � v1 � � � t2 (2.139)

as a first iteration of the state of motion, and so on. If we are primarily interested
in an iterative solution of the state of motion rather than its corresponding Green’s
function we can derive (2.139) in a more direct way that emphasizes the advantage
of the source concept. For this purpose let us rewrite (2.126) into

d2x.t/

dt2
D 1

m
� �.t/ � 2 �

dx.t/

dt
D Q�.t/ : (2.140)

Then, from (2.16) and the source Q�.t/

x.t/ D 1

m
�
Z tC

0

G0.t; t
0/ � �.t0/dt0 � 2 � �

Z tC

0

G0.t; t
0/ � dx.t0/

dt0
dt0 (2.141)

follows. The first term on the right-hand side provides the already known expression
x.0/.t/ D v1 � t of the uniform motion. Inserting this expression into the second term
on the right-hand side we end up again with (2.139) as a first iteration of the state of
motion, and so on. In so doing we avoid the precalculation of the Green’s function.
However, since we are primarily interested in the Green’s function to characterize
the object under consideration we prefer to apply the Lippmann-Schwinger equation
to this function.

We can proceed in the same way to get an iterative solution for the Green’s
function of the underdamped harmonic oscillator. In this case the Green’s function

@2G0.t; t0/
@t2

C !2 G0.t; t
0/ D 1

m
� ı.t � t0/ (2.142)

of the simple harmonic oscillator is used as the unperturbed problem. It represents
again the first term on the right-hand side of (2.134).

@2G.�t;�t00/
@t2

� 2� � @G.�t;�t00/
@t

C !2 G.�t;�t00/ D 1

m
� ı.t � t00/ (2.143)

is the corresponding adjoint equation. From (2.50) and noting that

@G0.t00; t/
@t

D � cos!.t00 � t/

m
� H.t00 � t/ C sin!.t00 � t/

m!
� ı.t00 � t/ (2.144)
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holds we get

G.1/.t00; t0/ D G0.t
00; t0/ C 2 � m

Z t00C

t0
G0.t; t

0/ � @G0.t00; t/
@t

dt D

G0.t
00; t0/ � 2 �

m!
�
Z t00

t0
sin!.t � t0/ � cos!.t00 � t/ dt : (2.145)

A tedious but straightforward evaluation of the integral gives finally

G.1/.t00; t0/ D G0.t
00; t0/ � � � .t00 � t0/ � G0.t

00; t0/ (2.146)

as the first iteration of the Lippmann-Schwinger equation for the Green’s function
of the damped harmonic oscillator. But the same expression can be obtained
from (2.99) if replacing again the exponential function expŒ� � .t00 � t0/� by the
first two terms of its Taylor expansion, and by neglecting � in the sine function as
well as in the denominator. Using this first iteration in (2.16) makes therefore only
sense if there is a very weak damping (a very small � ), or if the difference .t00 � t0/
between observation- and source time is small enough. The next higher iteration
may be obtained if we use the first iteration instead of G.t00; t/ under the integral on
the right-hand side of (2.134), i.e. from

G.2/.t00; t0/ D G0.t
00; t0/ C 2 � m

Z t00C

t0
G0.t; t

0/ � @G.1/.t00; t/
@t

dt ; (2.147)

and so on. But it should be emphasized at this point that the iteration procedure,
if applied to the damped harmonic oscillator, does not provide the shift to a lower
frequency at any step of iteration. It contains only the initial frequency of the simple
harmonic oscillator.

The simple harmonic oscillator has been considered as the unperturbed problem
and the friction term as the actual perturbation, so far. But the Green’s func-
tion (2.50) of the simple harmonic oscillator may be also derived by the iteration
procedure from the Green’s function of the forceless point mass, as we will
demonstrate now. In this case, the Green’s function (2.122) represents the solution
of the unperturbed problem (2.131). It is assumed to be given. Equation (2.142),
on the other hand, is the equation we intend to solve. Since this latter problem is
self-adjoint we start from the Lippmann-Schwinger equation

G.t00; t0/ D G0.t
00; t0/ � !2 m

Z t00C

t0
G0.t; t

0/ � G.t00; t/ dt ; (2.148)
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with G0.t00; t0/ according to (2.122). But (2.122) agrees already with the first
expansion term of (2.50) if expanding the sine function into a Taylor series. The
first iteration

G.1/.t00; t0/ D G0.t
00; t0/ � !2 m

Z t00C

t0
G0.t; t

0/ � G0.t
00; t/ dt (2.149)

reproduces the second term of this Taylor series, and so on. That is, the iterative
solution of the Lippmann-Schwinger equation (2.148) reproduces again the Taylor
expansion of the Green’s function (2.50).

This is the way the Lippmann-Schwinger equations can be used to gain iterative
solutions of more complex linear problems. The usefulness of these solutions are
mainly dependent on the definition and solvability of the unperturbed problem,
of course. Moreover, many nonlinear equations of interest in physics are still
linear in their second derivatives. Therefore, to gain iterative solutions on the basis
of corresponding Lippmann-Schwinger equations also in this nonlinear situation
seems to be a feasible approach. Wouldn’t it be a nice homework for the reader to
proof this idea by applying it to the anharmonic oscillator? But there is another
aspect that can be discussed in the context of the iterative solutions derived so
far in this section. There is an analogy to the renormalization procedure known
from Quantum Electrodynamics if applied to the mass of an electron, for example.
In the Prologue we shortly touched the point of view that in reality one can
never find an isolated object that is free of any interaction with its environment.
The renormalization procedure takes this situation into account by introducing an
“observable mass”. Regarding the above considered example of the motion of a
point mass in the presence of friction we can discuss the situation as follows:
The “mass” is a characteristic property of a point mass, of course. If we intend
to derive the mass solely on the detection of its state of motion we face the problem
that, if it is the uniform motion without any friction given by x0.t/ D v0 � t, then
there is no dependence on the “mass”. The same happens obviously for the free
fall. Only if taking an interaction with its environment into account—as it is done
with the Stokes’ friction term—the mass appears in the resulting state of motion.
Let us assume that the Stokes friction parameter ˇ is known. Then, from (2.16)
and (2.127) (i.e., if we measure the position at a certain observation time t > 0 in a
corresponding experiment) we get the state of motion of the point mass. This state of
motion and if taking relation � D ˇ=2m into account allows us to deduce its mass.
In this special situation we are fortunately in the possession of a closed analytical
expression of the Green’s function, and, if assuming an initial momentum according
to (2.80) as the acting source, of the resulting state of motion. The mass that is
deduced from this state of motion is therefore also completely known. However,
if we do not know this analytical solution we can try to approach it by the above
described iteration procedure of the Lippmann-Schwinger equation. This results in
a corresponding iteration of the mass that comes along with the hope that every
higher iteration will represent a better approach of the true mass. But in contrast to
Quantum Theory, there is no singularity problem with this mass that must be solved.
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This example was just mentioned to demonstrate the importance of the interaction of
the considered object with its environment, and, as a consequence of this interaction,
that it could make sense to distinguish between a true- and observable mass already
in this classical situation.

It should be finally mentioned that the Lippmann-Schwinger equation in Quan-
tum Theory is often represented in a somewhat different form. By use of defini-
tion (2.44) we may write instead of (2.134)

G.t; t0/ D G0.t; t
0/ C

m �
Z tC

t0
G0. Nt; t0/ �†. Nt; Qt/ � G.t; Qt/ d Qt d Nt : (2.150)

†. Nt; Qt/ therein denotes the so-called “self-energy operator”

†.t; t0/ D 2 � � @ı.t � t0/
@t0

: (2.151)

In a shorter operator notation (2.150) reads

G.t; t0/ D G0.t; t
0/ C m � G0. Nt; t0/ˇ†. Nt; Qt/ˇ G.t; Qt/ ; (2.152)

where we have to integrate over all time variables which appear twice. Regarding
the examples considered in this section this “self-energy” represents a loss of
energy caused by the state of motion of the point mass in the presence of the
phenomenologically introduced friction. We will come back to this operator in the
following section.

2.5 Two Systematic Ways to Derive Green’s Functions

We have already become acquainted with some Green’s functions as well as
with their usage to solve simple initial value problems for classical point masses.
This was accomplished by using the integral relation (2.16) as a pivotal mediator
between cause and effect. And we have just now discussed the Lippmann-Schwinger
equation that can be used as a starting point to gain iterative solutions for the
corresponding Green’s functions. Relation (2.16) was first derived by employing
Green’s theorem, the requirement of Causality, and by assuming that the underlying
equation of motion of the Green’s function is identical with the corresponding
equation of the state of motion x.t/ of the point mass but with its inhomogeneity on
the right-hand side (its source/cause) replaced by Dirac’s delta function ı.t � t0/ (a
unit source). In Sect. 2.1.2 we have alternatively discussed that one can consider the
equation of motion of the Green’s function and relation (2.16) to be given, and that
the corresponding equation of the state of motion x.t/ follows if the inverse G �1
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of the Green’s function is introduced appropriately. Now, before dealing with the
Green’s functions themselves, we will look at this interplay between the equations
of motion and relation (2.16) from a third point of view. For this purpose let us
consider the more general problem

OL x.t/ D �.t/ (2.153)

with the linear operator OL given by

OL D d2

dt2
C a1

d

dt
C a2 : (2.154)

Relation (2.16) is again used as an ansatz that fits to the requirement of Causality.
The importance of this relation is justified afterwards by its agreement with our
physical experience. Then, if using (2.16) in (2.153), the equation of motion

OL G.t; t0/ D ı.t � t0/ (2.155)

for the Green’s function follows immediately if taking the definition of Dirac’s delta
function (2.32) into account.

The Fourier transform method together with the residual theorem was the most
systematic way to derive the Green’s function we have considered so far. In the first
part of this section we are now going to show that the method discussed in Sect. 2.1.3
in conjunction with the Green’s function of the simple harmonic oscillator may be
put on a more sound and systematic mathematical footing that is closely related to
what is known from solving ordinary differential equations. Let us call it therefore
the “classical method” to determine the Green’s functions. By using Cauchy’s
integral formula we may define a complex-valued Dirac’s delta function that relates
this method to the residual theorem. The Kramers-Kronig relation we have already
discussed in the context of the damped harmonic oscillator in the presence of a
periodic excitation is finally discussed.

2.5.1 Classical Method to Determine the Green’s Functions

For reasons of clarity, let us write down again the four linear equations which of our
interest in this section. These are the equation

@2G.t; t0/
@t2

D 1

m
� ı.t � t0/ (2.156)
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of a point mass without friction, the equation

@2G.t; t0/
@t2

C !2 � G.t; t0/ D 1

m
� ı.t � t0/ (2.157)

of the simple harmonic oscillator, the equation

@2G.t; t0/
@t2

C 2 � � @G.t; t0/
@t

D 1

m
� ı.t � t0/ (2.158)

of a point mass with friction, and, finally, the equation

@2G.t; t0/
@t2

C 2 � � @G.t; t0/
@t

C !2 � G.t; t0/ D 1

m
� ı.t � t0/ : (2.159)

of the damped harmonic oscillator. In what follows m D 1 is again chosen for
simplicity. The final result must be multiplied by 1=m to take the dependence on
the mass into account. We are looking for solutions that are in accordance with the
requirement of Causality

G.t; t0/ D 0; if t < t0 (2.160)

as well as with the condition

lim
�!0

G.t0 C �; t0/ D 0 : (2.161)

That all these Green’s functions are only dependent on the temporal difference t � t0
is an experience we have gathered in the foregoing considerations. This holds not
only for the complete analytical solutions but also for all the iterative solutions of the
Lippmann-Schwinger equation. But also without this previous knowledge and due
to the linearity of the problems one may assume such a time dependence. Therefore,
introducing the new variable 
 D t � t0 we may write

d2G.
/

d
2
D ı.
/ (2.162)

d2G.
/

d
2
C !2 � G.
/ D ı.
/ (2.163)

d2G.
/

d
2
C 2 � � dG.
/

d

D ı.
/ (2.164)

d2G.
/

d
2
C 2 � � dG.
/

d

C !2 � G.
/ D ı.
/ : (2.165)
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Now, if using

G.
/ D F.
/ � H.
/ ; (2.166)

as an appropriate ansatz for the Green’s function, the requirement of Causality is
already satisfied. It remains the determination of the function F.
/. For this purpose
we have to insert (2.166) into the corresponding equation. Let us start with the most
simple situation (2.162).

Taking the first derivative of the Heaviside function and Dirac’s delta function
into account we thus get

d2F.
/

d
2
� H.
/ C

�
2 � dF.
/

d

� F.
/




�
� ı.
/ D ı.
/ : (2.167)

Next, let us consider function F.
/ to represent the general solution of the
corresponding homogeneous differential equation

d2F.
/

d
2
D 0 : (2.168)

This solution is obviously given by

F.
/ D C1 � 
 C C2 (2.169)

with so far unknown coefficients C1 and C2. But from condition

F.
/ D 0 if 
 D 0 (2.170)

it follows that

C2 D 0 : (2.171)

The remaining constant C1 can be determined by integration of equation (2.167)
with respect to 
 or by applying identity (2.71). This gives

2 �
�

dF.
/

d


�

D0

�
�

F.
/




�

D0

D 1 : (2.172)

Because of (2.170) L’Hospital’s rule can be applied to the second term on the left-
hand side thus providing the condition

�
dF.
/

d


�

D0

D 1 : (2.173)
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This generates indeed a solution of equation (2.167) with constant C1 given by

C1 D 1 : (2.174)

The Green’s function reads therefore

G.
/ D 
 � H.
/ (2.175)

or

G.t; t0/ D .t � t0/ � H.t � t0/ : (2.176)

It is exactly this approach we will call the “classical method” in this book. Now,
let us see if this method—looking for the general solution of the corresponding
homogeneous equation for the function F.
/ of ansatz (2.166) and determination of
the unknown constants from the two conditions

F.
 D 0/ D 0 (2.177)

and (2.173)—will also succeed in solving the other problems.

d2F.
/

d
2
C !2 � F.
/ D 0 (2.178)

is the homogeneous equation of F.
/ related to (2.163). Using the exponential
expression

F.
/ D ei�
 (2.179)

as an appropriate ansatz results in the characteristic equation

!2 � �2 D 0 (2.180)

to determine the parameter �. We thus get the two values �1 D ! and �2 D �!.

F.
/ D C1 � ei!
 C C2 � e�i!
 (2.181)

is the corresponding general solution of (2.178). The unknown coefficients are
calculated from (2.177) and (2.173). The result is

C1 D � C2 (2.182)

C2 D i

2 !
: (2.183)
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We note with satisfaction that we end up with the correct expression for the Green’s
function of the simple harmonic oscillator (see Eq. (2.49) but with m D 1!) if using
the Euler representation of the sine function.

Regarding the Green’s function for the point mass with friction we can proceed
in the same way. The corresponding characteristic equation is now given by

�2 � i 2 � � D 0 : (2.184)

The general solution of the homogeneous equation reads therefore

F.
/ D C1 C C2 � e�2�
 : (2.185)

The expressions

C1 D � C2 (2.186)

C2 D � 1

2 �
(2.187)

are the results of conditions (2.177) and (2.173). Looking at (2.127) we see that our
“classical method” produces again the correct result for the Green’s function of a
point mass in the presence of friction.

�2 � i 2 � � � !2 D 0 (2.188)

is the characteristic equation related to the damped harmonic oscillator. It follows
that

F.
/ D e��
 �
h
C1 � ei

p
!2��2�
 C C2 � e�i

p
!2��2�


i
(2.189)

is the general solution if � < ! is considered. From (2.177) and (2.173) we get

C1 D � C2 (2.190)

C2 D i

2
p
!2 � �2 : (2.191)

This results again in the correct Green’s function (2.99). The same procedure can be
applied with success to the other two cases � D ! and � > !.

Using the examples of the simple and damped harmonic oscillator we will now
discuss an aspect of the “classical method” that has its analogy in Quantum Field
Theory. We will slightly touch on this issue in the final chapter of this book. It is
concerned with the question of how to solve the corresponding equation of motion
by reducing it to the solution of only an ordinary differential equation of first order.
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For this purpose, let us consider the operator

OL1 D d

d

� i �	 ; (2.192)

where

	 D 	r C i �	i I 	r ; 	i � 0 (2.193)

represents a complex-valued quantity, in general. The general solution of the
equation

OL1 F1.
/ D 0 (2.194)

is obviously given by

F1.
/ D C1 � e i	
 : (2.195)

Combination with the conjugate-complex operator

OL�
1 D d

d

C i �	� (2.196)

provides

OL�
1

OL1 F.
/ D OL F.
/ D d2F.
/

d
2
C 2	i

dF.
/

d

C 	

	2
r C 	2

i



F.
/ : (2.197)

On the other hand we may state that equation

OL F.
/ D 0 (2.198)

corresponds

• with the equation of the simple harmonic oscillator if

	r D !0 I 	i D 0 (2.199)

• with the equation of the damped harmonic oscillator if

	r D
q
!20 � �2 I 	i D � : (2.200)

The solution F.
/ of (2.198) is then given by the combination

F.
/ D � i

2	r
� �F1.
/ � F�

1 .
/
�

(2.201)
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if taking again the two additional conditions (2.173) and (2.177) into account. F�
1 .
/

represents the solution of the conjugate-complex equation of (2.194), i.e., of

OL�
1 F�

1 .
/ D 0 : (2.202)

Its general solution is

F�
1 .
/ D C2 � e � i	� 
 : (2.203)

The damped harmonic oscillator is again characterized by the nonzero imaginary
part 	i and a shift to a lower eigenfrequency 	r. We will see later on in this
book that the “classical method” can be applied with benefit to derive the Green’s
functions of other problems. However, to find an appropriate ansatz for the Green’s
function (as accomplished with (2.166) for the above discussed examples!) is the
important initial step of this method. But such an ansatz can often be deduced
intuitively from the considered physical situation.

Next, we ask for the relation between the Green’s function

G.
/ D sin!


!
� H.
/ (2.204)

of the equation

�
d2

dt2
C !2

�
G.
/ D ı.
/ (2.205)

of the simple harmonic oscillator and the so far unknown Green’s function NG.
/ of
the first order equation

�
d

dt
C i!

�
NG.
/ D ı.
/ : (2.206)

This equation corresponds with equation (2.202) but with an inhomogeneity given
by ı.
/. Looking at (2.197) we may write instead of (2.205)

�
d

dt
C i!

� �
d

dt
� i!

�
G.
/ D ı.
/ : (2.207)

The solution of (2.206) can therefore be calculated from the Green’s func-
tion (2.204) by using the relation

NG.
/ D
�

d

dt
� i!

�
G.
/ : (2.208)
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Taking (2.71) into account we thus get

NG.
/ D e � i! 
 � H.
/ : (2.209)

In Chap. 6 we will derive a relation between the Green’s function of the Klein-
Gordon—and Dirac equation that is similar to (2.208).

Finally, let us come back to the Green’s function (2.75) we derived already in
Sect. 2.1.4 by employing the Fourier transform method. This Green’s function was
not in agreement with our additional requirements of Causality and Reciprocity.
Since a similar situation is known in Quantum Mechanics in conjunction with the
Klein-Gordon equation, for example, it may well be of interest to see how this
Green’s function can be derived by using the “classical method”. To this end, we
simply have to replace ansatz (2.166) by

G.
/ D F C.
/ � H.
/ � F �.
/ � H.�
/ : (2.210)

Then, instead of the two conditions (2.173) and (2.177), we now end up with the
two conditions

�
dŒF C.
/C F �.
/�

d


�

D0

D 1 (2.211)

and

F C.
 D 0/ C F �.
 D 0/ D 0 (2.212)

to determine the unknown coefficients of the two linear independent solutions

F C.
/ D C1 � ei!
 (2.213)

and

F �.
/ D C2 � e�i!
 (2.214)

of the corresponding homogeneous equations of the simple harmonic oscillator.
These coefficients are again given by (2.182) and (2.183). The final result reads
therefore

G.
/ D � i

2!
� �ei!
 � H.
/ C e�i!
 � H.�
/� (2.215)

which is identical with the result (2.75) derived in Sect. 2.1.4.
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2.5.2 Alternative Formulation by Using Cauchy’s Integral
Formula

The inversion formula

G.
/ D
Z 1

�1
G. N!/ � e i N!
 d N!

2�
(2.216)

as well as the Fourier transforms

G. N!/ D � 1

N!2 (2.217)

G. N!/ D � 1

N!2 � !2
(2.218)

G. N!/ D � 1

N!2 � i2� N! (2.219)

G. N!/ D � 1

N!2 � !2 � i2� N! (2.220)

of the Green’s functions related to Eqs. (2.162)–(2.165) are principally involved in
the discussion regarding the relation between the “classical”—and Fourier transform
method. At first, let us consider the three cases (2.218)–(2.220). The zeroes of
the characteristic equations used before to find the general solution F.
/ of the
corresponding homogeneous equations within the “classical method” are obviously
identical with the poles of the above given Fourier transforms. And also the
exponential ansatz (2.179) has its counterpart in the expression e i N!
 of the inversion
formula. Since there are only two simple poles N!1 and N!2 located somewhere in the
complex N!-plane we may write

G. N!/ � e i N!
 D � e i N!


. N! � N!1/ � . N! � N!2/ ; (2.221)

where

N!1 D !

N!2 D �! ; (2.222)

N!1 D i2�

N!2 D 0 ; (2.223)
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or

N!1 D i� C
p
!2 � �2

N!2 D i� �
p
!2 � �2 (2.224)

must be used to agree with (2.218)–(2.220), respectively. The poles (2.222)
and (2.223) are limiting cases of the poles (2.224) if � ! 0 and ! ! 0. Cauchy’s
integral formula for any analytical and complex-valued function f . N!/ in a region �
is given by

I
�

f . N!/
. N! � N!0/

d N!
2� i

D f . N!0/ : (2.225)

With the definition
I
�

f . N!/ � ıc. N! � N!0/ d N!
2�

WD f . N!0/ (2.226)

of a complex-valued Dirac’s delta function we get therefore

ıc. N! � N!0/ D 1

2�i
� 1

. N! � N!0/ (2.227)

(see Stumpf und Schuler (1973), Johansson et al. (2012), for example). For the three
cases of our interest we may therefore write instead of (2.216)

G.
/ D � i

. N!1 � N!2/ �
Z 1

�1
e i N!
 � Œıc. N! � N!1/ � ıc. N! � N!2/� d N! : (2.228)

The paths �1 and �2 of integration are chosen such that only the contributionR 1
�1 � � � d N!=2� remains from integral (2.225) (see also Fig. 2.5). Since the section

along the positive imaginary axis is traversed twice but with opposite sign it does not

Fig. 2.5 Path of integration
in the upper complex N!-plane
if using Cauchy’s integral
formula

Im [ω̄]

Re [ω̄]

Γ = Γ1 ∪ Γ2

∞

∞

−∞ � ω̄1

Γ1

�ω̄2

Γ2
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contribute to the integral. That is, we may replace the two quarter circles at infinity
in the upper half-plane by a semi-circle). This gives the general solution

G.
/ D � i

. N!1 � N!2/ � �C1 � e i N!1
 � C2 � e i N!2
 � : (2.229)

The unknown coefficients C1 and C2 are now calculated from the additional
conditions

G.
 D 0/ D 0 (2.230)�
dG.
/

d


�

D0

D 1 : (2.231)

This results in C1 D C2 D 1 for the three cases (2.218)–(2.220)under consideration.
It is again straightforward to show that one gets the well-known expressions for the
corresponding Green’s functions if taking the zeroes (2.222), (2.223), and (2.224)
in (2.229) into account, and if multiplying the result by the Heaviside function H.
/.

The Fourier transform of the Green’s function has been obtained from the
respective equation of motion, so far. But it can also be derived from the integral
representation

G. N!/ D
Z 1

�1
G.
/ � e�i N!
 d
 (2.232)

once the Green’s function G.
/ in the time domain is known. Let us demonstrate
this by deriving the Fourier transform (2.220) of the underdamped oscillator (if m is
set to unity). The corresponding Green’s function in the time domain reads

G.
/ D e � � 
 � sin. Q! � 
/
Q! � H.
/ ; (2.233)

where Q!2 D !2 � �2. Using the Euler representation of the sine function (2.232)
provides

G. N!/ D � i

2 Q!
�Z 1

0

e�i
. N!� Q!�i�/ d
 �
Z 1

0

e�i
. N!C Q!�i�/ d


�
: (2.234)

If we consider these integrals to represent the Fourier transforms of Dirac’s delta
functions with complex-valued arguments we have

G. N!/ D � i

2 Q! Œıc. N! � Q! � i�/ � ıc. N! C Q! � i�/� : (2.235)

Applying (2.227) provides (2.220).



58 2 Green’s Functions of Classical Particles

Exercise: Show that the same procedure can be applied to derive the Green’s
function of the critically damped and overdamped oscillator.

It should be also mentioned that the above described procedure may be general-
ized to linear differential equations of order n. If the Fourier transform has n simple
poles, then the general solution for the Green’s function reads

G.
/ D � i �
nX

lD1
Cl � e i N!l
Qn

kD1;k¤l. N!l � N!k/
: (2.236)

The unknown coefficients Cl are calculated from n additional conditions derived
along the same way described in Sect. 2.5.1. The pivotal aspect of the above method
is therefore the determination of the poles of the Fourier transform. But I want
to emphasize once again that these poles are identical with the zeroes of the
characteristic equation that results from the classical ansatz in terms of exponential
functions to solve the corresponding homogeneous differential equation.

Now, let us see how we can solve case (2.217). Since the Fourier transform has a
double pole at N! D 0 we have to apply Cauchy’s integral formula

I
�

f . N!/
. N! � N!0/2

d N!
2�

D i �
�

df . N!/
d N!

�
N!D N!0

: (2.237)

We then get from (2.217) and the inversion formula

G.
/ D � i C0 �
�

de i N!


d N!
�

N!D0
D C0 � 
 : (2.238)

C0 D 1 follows from condition (2.231). This is again the known result for the
Green’s function if multiplied by the Heaviside function. Relation (2.237) may be
used moreover to define the first derivative of Dirac’s delta function with complex
arguments.

Let us finally look once again at the 4 problems considered above but from the
point of view of the self-energy operator. This quantity was introduced at the end
of Sect. 2.4 that was concerned with the Lippmann-Schwinger equation. Starting
from (2.150) the equation of motions (2.156)–(2.159) may be rewritten as follows:

@2G.t; t0/
@t2

C
Z tC

t0
†.t; Nt/ � G. Nt; t0/ d Nt D 1

m
� ı.t � t0/ : (2.239)

†o.t; t
0/ D 0 (2.240)

†O.t; t
0/ D !2 � ı.t0 � t/ (2.241)

†R.t; t
0/ D 2 � � @ı.t � t0/

@t0
(2.242)
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are the possible expressions for the self-energy operator entering Eq. (2.239).†o is
the characteristic expression of the free point mass. †O is the self-energy operator
that is related to the simple harmonic oscillator, and†R characterizes the presence of
friction. These expressions can be combined appropriately. The damped harmonic
oscillator, for example, is then represented by Eq. (2.239) and

†.t; Nt/ D †R.t; Nt/ C †O.t; Nt/ : (2.243)

According to the convolution theorem the Fourier transform of Eq. (2.239) gives

G. N!; t0/ D � 1

m
� e�i N!t0

N!2 � †. N!/ ; (2.244)

where

†o. N!/ D 0 (2.245)

†O. N!/ D !2 (2.246)

†R. N!/ D i 2 � N! (2.247)

(please, note that the last expression is a consequence of the definition (2.44)
of the first derivative of Dirac’s delta function). We reached at a point where
we can mathematically sharpen our more philosophical considerations in the
Prologue regarding the definition of the basic category objects by their respective
properties (see Sect. 1.2). Equation (2.244) together with a specific expression for
the self-energy operator may be considered with some justification as an abstract
mathematical definition of a specific object in the Fourier transform domain. This
object—after it is transformed back into the time domain, and after a source is
specified—is then be brought to “physical life” with our pivotal relation (2.16) (i.e.,
it is transferred into a certain state that has to be related by an appropriate procedure
to a measurable quantity). But there is another possibility of interpretation. We may
characterize an ideal and isolated object—that is an object without any interaction
with its environment—by a real-valued self-energy operator. These are the two
objects “free point mass” and “simple harmonic oscillator”, regarding the cases
we have considered so far. The complex-valued part of the self-energy operator
is then used to describe the influence of the environment—the phenomenologically
introduced friction in the above examples—that comes along with a loss of energy.
An even more rigorous position would be the definition of the “free point mass”
as the only interaction-free object of classical particle physics characterized by
a vanishing † according to (2.245). All nonzero self-energy operators are then
considered as lossless (the external force of the simple harmonic oscillator) or lossy
(the friction) impacts on this idealized object from its environment. The usage of
real-valued self-energy operators to characterize idealized objects exhibits already
an analogy to the Hermitian operators of Quantum Mechanics, according to my
mind.
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2.5.3 Kramers-Kronig Relation

The Fourier transform (2.220) of the Green’s function of the damped harmonic
oscillator is within the focus of the following considerations. The situation is
moreover restricted to a periodic external excitation, and that the oscillator is already
in a steady state. This latter situation is obtained by shifting the lower integration
boundary in Eq. (2.16) to t D �1, as already discussed in Sect. 2.2.2. And, finally,
m D 1 is again chosen for simplicity. Since the Green’s function depends only on
the temporal difference t � t0 we have

x.t/ D
Z tC

�1
G.t � t0/ � �.t0/ dt0 ; (2.248)

or, if introducing the new variable 
 D t � t0,

x.t/ D
Z 1

0

G.
/ � �.t � 
/ d
 : (2.249)

We can use (2.233) as the relevant Green’s function, for example, if the under-
damped situation is considered. We know furthermore that both the expres-
sions (2.249) and (2.16) are in agreement with Causality. Applying the convolution
theorem to (2.249) provides

x. N!/ D G. N!/ � �. N!/ ; (2.250)

where

G. N!/ D
Z 1

�1
G.
/ � e�i N!
 d
 : (2.251)

Because of

�. N!/ D
Z 1

�1
�.t/ � e�i N!t dt (2.252)

and since we assume a periodic source with the external excitation frequency Q!
given by

�.t/ D C � e ˙ i Q! t (2.253)

it follows that

�. N!/ D 2�C � ı. N! � Q!/ : (2.254)
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The damping term of the complex-valued amplitude of x.t/ and of the Fourier
transform of the Green’s function differ in sign if the lower sign in expres-
sion (2.253) is used. But it is identical for the upper sign in (2.253). This can be seen
from Eqs. (2.104)/(2.105) and (2.109) in Sect. 2.2.2. We may therefore expect that
the Kramers-Kronig relations (2.119) and (2.120) for the in general complex-valued
amplitude can be translated into corresponding relations for the Fourier transform
of the Green’s function. Equations (2.220) and (2.251) are therefore in the center of
our interest in what follows.

According to (2.224) the poles of the Fourier transform of the Green’s function
are located in the upper half of the complex N!-plane. In the lower complex N!-
plane (2.251) reads

G. N!/ D
Z 1

�1
G.
/ � e�i N!r
 � N!i
 d
 ; (2.255)

where we have N! D N!r � i N!i and N!i � 0. But this is a holomorphic function in
the lower complex N!-plane since it is finite everywhere (also if N! D 0) and tends
quickly to zero at the lower semi-circle as long as 
 � 0. This latter condition is
justified by the Causality of G.
/ reflected in the Heaviside function H.
/. From
Cauchy’s integral formula it then follows that the integral in (2.255)—if closed at
the lower semi-circle—becomes zero,

I
�

G. N!/ d N! D 0 : (2.256)

Now, instead of (2.256) let us consider the integral

I
�0

G. N!/
N! � N!0 d N! (2.257)

with a single pole N!0 located at the positive real axis, and with the closed integration
path � 0 shown in Fig. 2.6. Since the pole N!0 is outside this integration path (2.257)
must also become zero. From Cauchy’s integral formula it now follows that

pv
Z 1

�1
G. N!/
N! � N!0 d N! D � i� G. N!0/ : (2.258)

The part of the integral that runs in mathematical positive sense along the semi-
circle with radius r D a around the pole N!0 just provides Ci� � ıc. N! � N!0/. The
integral along the lower semi-circle at infinity in the lower plane, on the other hand,
provides zero. The principal value integral along the real axis is defined according to

pv
Z 1

�1
G. N!/
N! � N!0 d N! WD lima!0

"Z N!�a

�1
G. N!/
N! � N!0 d N! C

Z 1

N!Ca

G. N!/
N! � N!0 d N!

#
:

(2.259)
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Fig. 2.6 Path of integration
in the lower complex N!-plane
related to the Kramers-Kronig
relation
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Splitting of the Fourier transform G. N!/ into its real and imaginary part G0. N!/ C
iG00. N!/ provides the Kramers-Kronig relations

G
0

. N!0/ D � 1

�
� pv

Z 1

�1
G

00

. N!/
N! � N!0 d N! (2.260)

G
00

. N!0/ D 1

�
� pv

Z 1

�1
G

0

. N!/
N! � N!0 d N! : (2.261)

These relations can further be modified and be expressed in terms of integrals over
positive frequencies N! alone. This is possible since

G �. N!/ D G.� N!/ (2.262)

holds. This follows from (2.251) and the fact that G.
/ is a pure real quantity.
Regarding the real and imaginary part of G. N!/ it follows from (2.262) that we have

G
0

. N!/ D G
0

.� N!/ (2.263)

G
00

. N!/ D � G
00

.� N!/ : (2.264)

Splitting (2.220) into its real and imaginary part according to

G. N!/ D G
0

. N!/ C i G
00

. N!/ ; (2.265)
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where

G
0

. N!/ D .!2 � N!2/
.!2 � N!2/2 C 4 �2 N!2 (2.266)

G
00

. N!/ D � 2 � N!
.!2 � N!2/2 C 4 �2 N!2 (2.267)

is a direct way to justify relations (2.263) and (2.264) for the Green’s function of
our interest. Then, if multiplying the integrands in (2.260) and (2.261) by

1 D N! C N!0
N! C N!0 (2.268)

and if taking (2.263) and (2.264) into account we get finally the Kramers-Kronig
relations

G
0

. N!0/ D � 2

�
� pv

Z 1

0

N! � G
00

. N!/
N!2 � N!20

d N! (2.269)

G
00

. N!0/ D 2 N!0
�

� pv
Z 1

0

G
0

. N!/
N!2 � N!20

d N! : (2.270)

It should be noted that they differ from relations (2.119) and (2.120) in sign. This
can be explained by the location of the poles of the complex amplitude of x.t/ in
Sect. 2.2.2 in the lower complex plane. Thus we have to close the integration path
at infinity in the upper complex plane. The pole N!0 in (2.257) would thus be circled
in mathematical negative sense. This would change the sign on the right-hand side
of (2.258). It should be stated moreover that there is no damping in the time domain
if the imaginary part of the Fourier transform of the Green’s function is represented
by Dirac’s delta function, as already observed in Sect. 2.2.2. (Nussenzveig 1972) is
highly recommended for further reading about Kramers-Kronig and other dispersion
relations.

Let us summarize the results of this section:

• Causality is an essential precondition to derive the Kramers-Kronig relations for
the Fourier transform of the Green’s function.

• Due to Causality and in the presence of a periodic external excitation the
Kramers-Kronig relations of the Green’s function may be directly transferred
to the complex-valued amplitude of x.t/.

• All the poles of the considered Fourier transform must be located either in
the lower or in the upper complex plane. The Fourier transform must be a
holomorphic function and must tend quickly to zero at infinity in the respective
other half-plane.
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• If the imaginary part of the Fourier transform of the Green’s function is
represented by Dirac’s delta function no damping in the time domain can be
observed. The imaginary part will take the form of a Lorentzian profile if there is
a damping.

2.6 Temporal Boundary Value Problem of the Harmonic
Oscillator

Initial condition problems of point masses have been exclusively considered so
far. These initial conditions (initial position and initial momentum)—according
to our understanding formulated in the Prologue—are provided by corresponding
sources. The object itself was characterized by its Green’s function G.t; t0/. Its state,
produced by a given source, was considered to be the result of relation (2.16). In
other words and in accordance with the discussion at the end of Sect. 2.5.2: Our
object of desire—so far—was the free point mass characterized by its Green’s
function G0 according to (2.122). This point mass was subjected to different external
influences (to an external force and/or to a phenomenologically introduced friction).
In this section we will turn toward a different class of problems—so-called boundary
value problems. For this purpose we consider once again the behaviour of the
harmonic oscillator but in the presence of additional temporal conditions.

The following considerations are first aimed at a demonstration that an infinitely-
countable number of simple harmonic oscillators—all subject to the same temporal
boundary conditions—may be summarized into one superior object (let us call it a
“super oscillator”) with an infinitely-countable number of inner states (or degrees)
of freedom. These inner states provide a complete physical characterization of
this super oscillator. This will lead us already in this classical situation to an
understanding of the abstract category object that is closely related to what is known
from Quantum Mechanics. We faced a similar equivalence between a classical and
a quantum mechanical point of view already at the end of Sect. 2.5.2 in conjunction
with the self-energy operator. Second but not less important, the representation
of the Green’s function by a series expansion in terms of the eigenfunctions and
with singularities at the eigenfrequencies usually employed in this situation will be
critically scrutinized. The “source picture” of the Fourier series will be discussed as
an alternative presentation. This will allow us to better express the point of view that
a certain state of an object may be considered as the source for the state of another
object from the same object class, as already mentioned in the Prologue.

Let us at first keep our attention focused on initial value problems, and let us
consider the equation of motion (2.20) of the simple harmonic oscillator but now
supplemented by the additional temporal conditions

x.t D 0/ D x.t D t1/ D 0 I t1 > 0 : (2.271)
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There exist an infinitely-countable number of oscillators with eigenfrequencies !n

given by

!n D n�

t1
I n D 1; 2; � � � ; (2.272)

all of them subject to these additional conditions. The corresponding equation of
motion that is in agreement with (2.271) reads therefore

d2xn.t/

dt2
C !2n � xn.t/ D 1

m
� �n.t/ : (2.273)

Using (2.16), the Green’s function

Gn.t; t
0/ D sin!n.t � t0/

m � !n
� H.t � t0/ (2.274)

of the corresponding simple harmonic oscillator, and if assuming the source

�n.t/ D m � vn � ı.t/ (2.275)

with initial momentum m vn we obtain

xn.t/ D vn

!n
� 'n.t/ ; (2.276)

where

'n.t/ D sin!n t : (2.277)

All the solutions (2.276)—time harmonic oscillations with amplitudes xn D
vn=!n—obey the required temporal conditions. The functions 'n.t/ I n D 1; 2; � � �
represent moreover an orthogonal basis in the temporal region t 2 Œ0; t1�. These
are the eigensolutions of the homogeneous Eq. (2.273). !2n are the corresponding
eigenvalues. Every function x.t/ subject to the temporal boundary conditions may
therefore be expanded into the Fourier series

x.t/ D
1X

nD1
xn � 'n.t/ (2.278)

in t 2 Œ0; t1� with expansion coefficients xn given by

xn D vn

!n
: (2.279)
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A specific expansion may therefore considered to be the result of the superposition
of an in general infinitely-countable number of solutions of single oscillators, all
excited at t D 0 with appropriate initial momenta.

x.t/ D
1X

nD1

Z tC

0

Gn.t; t
0/ � �n.t

0/ dt0 (2.280)

with Gn.t; t0/ according to (2.274) and �n.t0/ according to (2.275) represents
therefore the Fourier series (2.278) as a result of an initial value problem related
to the equation of motion (2.20) subject to the additional conditions (2.271). Now,
let us see how this problem is usually solved in the literature by use of Green’s
functions (see Duffy (2001), for example).

Starting point is the equation of motion

@2G.t; t0/
@t2

C !2 � G.t; t0/ D 1

m
� ı.t � t0/ (2.281)

with not yet specified !, and the additional temporal conditions

G.t D 0; t0/ D G.t D t1; t
0/ D 0 : (2.282)

Representing the Green’s function in t 2 Œ0; t1� by the series expansion

G.t; t0/ D
1X

nD1
Gn.t

0/ � 'n.t/ (2.283)

in terms of the eigensolutions (2.277) will satisfy these conditions. The so far
unknown expansion coefficients Gn.t0/ are obtained from Eq. (2.281), and if using
the corresponding Fourier series expansion

ı.t � t0/ D
1X

nD1
Dn.t

0/ � 'n.t/ ; (2.284)

of Dirac’s delta function with expansion coefficients Dn.t0/ given by

Dn.t
0/ D

Z t1

0

ı.t � t0/ � 'n.t/ dt D 'n.t
0/ : (2.285)

This representation of Dirac’s delta function is also known as the “completeness
relation”. Inserting this representation in Eq. (2.281), we obtain for the expansion
coefficients in (2.283)

Gn.t
0/ D 1

m
� 'n.t0/
!2 � !2n

: (2.286)
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The Green’s function is therefore given by the bilinear expansion

G.t; t0/ D 1

m
�

1X
nD1

'n.t/ � 'n.t0/
!2 � !2n

D 1

m
�

1X
nD1

Gn.!n/ � 'n.t/ � 'n.t
0/ : (2.287)

Beside its poles at the eigenfrequencies (mathematically called its “point spec-
trum”) this Green’s function exhibits another interesting feature which makes it
essentially differ from the Green’s function (2.274) of the initial value problem.
Equation (2.287) is now a symmetric function with respect to the time variables
t and t0. It is therefore not in agreement with Causality, as required for the initial
value problem. However, if we are interested in establishing a causal relation
between a certain state �.t/ of an assumed source and the resulting state x.t/ of
the considered object, and if all these states are time-periodic states restricted to the
region t 2 Œ0; t1�, the Causality requirement applied to the initial value problems is
not really necessary. Let us rather take up the position that the expansion coefficients
of the state of the considered object—if expanded into a Fourier series in terms of the
eigenfunctions (2.277)—are determined by an assumed source that is also expressed
in terms of an appropriate Fourier series within Œ0; t1�. This is exactly what I will call
the “source picture” of the Fourier series. Applying Green’s theorem (2.22) in region
Œ0; t1� to the equation of motion, and if taking the temporal boundary conditions as
well as the symmetry of (2.287) into account, it is straightforward to show that

x.t/ D 1

m
�

1X
nD1

Gn.!n/ �
Z t1

0

'n.t
0/ � �.t0/ dt0 � 'n.t/ (2.288)

holds. This relation replaces (2.16). But, as already discussed in Sect. 2.1.2, there
exists another possibility to directly derive (2.288) by introducing the inverse of the
Green’s function G �1.t; t0/ according to

G �1.t; Nt/ˇ G. Nt; t0/ D 1

m
� ı.t � t0/ : (2.289)

Note that we have again to integrate from 0 to t1 with respect to all time variables
which appear twice! Comparison with (2.281) provides

G �1.t; t0/ D
�
@2

@t2
C !2

�
ı.t � t0/ : (2.290)

This inverse of the Green’s function is also symmetric with respect to t and t0. The
equation of motion

d2x.t/

dt2
C !2 � x.t/ D 1

m
� �.t/ (2.291)
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can be rewritten into

G �1.t; Nt/ˇ x. Nt/ D 1

m
� �.t/ : (2.292)

After multiplication of this equation with G.Qt; t/, and if taking (2.287) as well
as (2.289) into account we end up with (2.288).

Expression (2.288) is well-known from the literature (see Duffy (2001), for
example). It is usually supplemented with the remark that, due to the resulting
singularity, it cannot be used for any periodic source that provides an external
excitation at the eigenfrequencies. This is justified by the observation that this
situation runs into the resonance catastrophe, as already considered in Sect. 2.1.5.
But, regarding this catastrophe we have seen that it is linear in time. That is, the
amplitude becomes infinite only if t tends to 1. One may therefore ask if (2.288)
can be applied if this periodic source is acting only a finite time? Moreover, applying
the source (2.275) in (2.288) provides the boring solution x.t/ D 0 instead of (2.278)
derived before. On the other hand, using the source

�.t/ D m � vn �
�
1 � !2

!2n

�
dı.t/

dt
; (2.293)

in (2.288) provides exactly solution (2.278). This raises the question about the
meaning of relation (2.288). The following considerations should be considered
as an attempt to give an answer and to provide a first justification of the “source
picture” of the Fourier series from a physical point of view.

The integral term on the right-hand side of Eq. (2.288) provides exactly the
expansion coefficients �n of a source function �.t/ if expanded in Œ0; t1� in terms
of the orthogonal eigenfunctions 'n.t/. Let us assume for a moment that ! ¤ !n

holds. The series expansion

�.t/ D
1X

nD1
�n � 'n.t/ (2.294)

of this source is then converted by Eq. (2.288) into the series expansion

x.t/ D
1X

nD1
xn � 'n.t/ ; (2.295)

of the sought solution in Œ0; t1� and with expansion coefficients xn given by

xn D 1

m
� �n

!2 � !2n
: (2.296)
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From a physical point of view we can therefore consider expression (2.288) as the
representation of a causal relation between the state �.t/ of a given source and the
state x.t/ of an object (the initially mentioned super oscillator) that is characterized
by an infinitely-countable number of inner degrees of freedom subject to the
additionally required temporal boundary conditions (2.271). But what happens if
! D !n holds? Then we have again a singularity problem. But this problem can be
avoided if every source is considered as an impressed source, and if it is chosen such
that it produces every observable state of the super oscillator. Thus we may replace
the pivotal relation (2.288) simply by

x.t/ D
Z t1

0

ı.t � t0/ � �.t0/ dt0 ; (2.297)

where the bilinear expansion

ı.t � t0/ D
1X

nD1
'n.t/ � 'n.t

0/ (2.298)

is used for Dirac’s delta function once the eigenfunctions 'n.t/ are known. In that
case, the source

�.t/ D
1X

nD1

vn

!n
� 'n.t/ (2.299)

would be equivalent to the source (2.275) of the initial value problem since it
produces the same state. In the case considered here this is only something like
a tautological source since it results in an identical expansion of the state x.t/. In
other words: In this situation (2.297)/(2.298) represents nothing but a mapping of
a state x.t/ onto itself since we cannot distinguish between the acting source and
the resulting state. Newton’s cradle may be used to demonstrate this situation. In
the steady state we cannot say which one of the outer balls is representing the
considered object and the source. However, to demonstrate that the importance
of (2.297)/(2.298) can go beyond such a simple tautological cause and event relation
let us go back to the definition of Dirac’s delta function by its sifting property

f .t/ WD
Z t1

0

f .t0/ � ı.t0 � t/ dt0 : (2.300)

That is ı.t0 � t/ is acting as a sieve, selecting from all possible values of the function
f .t0/ its value at the point t0 D t. On the other hand, if expanding a given function
f .t/ into a Fourier series in terms of the orthonormal eigenfunctions 'n.t/ we have

f .t/ D
Z t1

0

1X
nD1

'n.t/ � 'n.t
0/ � f .t0/ dt0 : (2.301)
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A comparison of both expressions (2.300) and (2.301) provides the bilinear
expansion (2.298) of Diracs delta function. However, the situation is different when
it is only known that the function f .t/ is a result of the acting source

�.t/ D
MX

mD1
�m � �m.t/ : (2.302)

Let us further assume that the expansion functions �m.t/ may form another
orthogonal basis in the temporal region Œ0; t1�, and, moreover, that there are reasons
(specific interactions which may result in specific boundary conditions, for example)
to represent f .t/ by a Fourier series in terms of the eigenfunctions'n.t/. Well, I know
that it is hard to imagine in case of the temporal boundary value problem considered
here. But in some cases this is indeed possible, as we will see in Chap. 5. Then,
from (2.297)/(2.298) we get

f .t/ D
X
n;m

Tnm � �m � 'n.t/ D
X

n

fn � 'n.t/ ; (2.303)

where the elements Tnm are given by

Tnm D
Z t1

0

'n.t/ � �m.t/ dt : (2.304)

These are the elements of the so-called “T-matrix” T (the “transition matrix”) we
will encounter frequently in this book. Now it is more than a simple tautological
mapping of the source onto the state.

To summarize: The bilinear expansion (2.298) (the completeness relation) of
Dirac’s delta function is a representation of all inner degrees of freedom of the object
“simple harmonic super oscillator”. This representation results from the eigenvalue
problem

OL'n.t/ � �n � 'n.t/ D 0 (2.305)

related to the operator

OL D d2

dt2
: (2.306)

In analogy to Quantum Mechanics we can therefore make the following statement:
All possible/observable states of the object “simple harmonic super oscillator” are
described by the Hermitian operator (2.306) in a space defined by t 2 Œ0; t1� and
the additional temporal boundary conditions at its boundaries. The eigenvalues and
eigenfunctions in the considered situation are given by

�n D �!2n (2.307)
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and

'n.t/ D sin .!n t/ : (2.308)

Which states are excited with a certain amplitude in a certain experiment depends
on the source, that is used in (2.297). The source itself is also described by a certain
number of oscillator states. This is the justification for an understanding of (2.297)
and (2.298) as a source picture of the Fourier series that establishes a causal relation
between the given state of a source and the resulting state of the considered object.
This point of view looks quite formal for the temporal boundary value problem
of the simple harmonic oscillator. The equivalent initial value problem discussed
at the beginning of this section appears more obvious. However, it was discussed
already at this point to get a first impression of how to introduce a typical quantum
mechanical point of view into classical physics. Let us conclude this section with a
quick look at the damped harmonic oscillator.

Regarding the damped harmonic oscillator we have to take the complex-valued
Fourier transform (2.247) of the self-energy operator additionally into account.
This results in two effects—the lowering of the frequency and the damping of the
state—as already discussed. Both effects can be observed in a real experiment.
From (2.280), Green’s function (2.99), and if applying the source (2.275) we get
the series expansion

x.t/ D e � � �t �
1X

nD1

vn

Q!n
� 'n. Q!n; t/ : (2.309)

'n is again given by (2.277) but with !n replaced by Q!n according to

Q!2n D !2n � �2 : (2.310)

This series expansion differs from (2.278) in the additional damping term that is
independent of the eigenfrequency, and in the lower eigenfrequencies Q!n. Please,
note that Q!n was explicitly written as an argument of the eigenfunctions to indicate
this latter difference. If the mass and the spring constants of the damped oscillators
are those of the simple harmonic oscillators, then, instead of (2.271), each of the
damped oscillators obeys the modified temporal boundary conditions

x.t D 0/ D x.t D t01/ D 0 ; (2.311)

where t01 > t1, and

t01 D t1 �
�
1 � �2 t21

�2

��1=2
: (2.312)
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This enlargement of the period can be measured. But we have also the possibility to
insist on the boundary conditions (2.271). Then, if the mass of the undamped system
is used again, we have to replace the spring constants

kn D m �
�

n�

t1

�2
(2.313)

of the undamped system by

k0
n D m �

"�
n�

t1

�2
C �2

#
D kn C m � �2 : (2.314)

The corresponding series (2.309) represents therefore a different object. That is, it is
now impossible to maintain the position that the object (the simple harmonic super
oscillator) remains the same but now exposed to the influence of its environment
(the friction in our case), and that this influence may be studied by measuring
the lowering of the eigenfrequencies and the damping of the amplitudes. And, in
contrast to (2.287), it is also impossible to find a bilinear expansion of the Green’s
function with expansion coefficients Gn.!n/ independent of t and t0. This is a
consequence of the additional term

2 � � @G.t; t0/
@t

(2.315)

in the corresponding equation for the Green’s function of the damped harmonic
oscillator.

2.7 Two Simple Interaction Processes and Huygens’
Principle

Two simple interaction mechanisms are within the focus of this section. It will
be a first demonstration of how to incorporate these mechanisms into the Green’s
function formalism. In addition, it will be shown that these interactions may
be replaced by equivalent but induced sources, according to our more general
understanding of Huygens’ principle mentioned in the Prologue. That they are
local with respect to space and time is a characteristic property of the considered
interactions. This will allow us to take up a typical position known from scattering
theory. That is, information about the interaction may be obtained by comparing the
“free states” of the considered object before and after the interaction.



2.7 Two Simple Interaction Processes and Huygens’ Principle 73

2.7.1 Interaction with a Wall

First, let us consider the following very simple one-dimensional experimental
situation: A point mass with mass m rests upon a horizontal plane. A primary
source—an initial momentum according to (2.80)—is acting at time t D t0 on this
point mass. As a result it starts moving forceless—let us say along the x-axis—with
constant velocity v1. There will be an interaction of the moving point mass with a
wall at time t D tw > t0. The wall is mounted perpendicularly to the x-axis. After this
interaction, i.e., for times t > tw, the point mass moves again forceless along the x-
axis. The forceless motion with the constant velocity v1 represents the “free state” of
the point mass before the interaction. It can be compared with the primary incident
acoustic or electromagnetic plane wave that is scattered on an obstacle. In scattering
theory, this incident plane wave is usually assumed to be the given solution of the
homogeneous wave equation, as we will see in Chap. 4. Regarding the forceless
motion of the point mass we face the same situation. This state of motion is usually
assumed to represent the solution of the homogeneous equation of motion m � Rx D 0.
However, a consistent Green’s function approach requires necessarily a generating
source for the plane wave as well as for the forceless motion. If not, there would be
no plane wave or the point mass would freeze in place. Now, let us see how we can
formulate this simple experiment by use of Green’s functions. We decompose the
Green’s function G.t; t0/ into the two parts

G.t; t0/ D G0.t; t
0/ C GW.t; tw/ � H.t � tw/ : (2.316)

G0.t; t0/ is identical with (2.122), and, therefore, a solution of the inhomogeneous
equation (2.131) before the interaction with the wall takes place. The interaction
part GW.t; tw/, on the other hand, is assumed to be a solution of the homogeneous
equation

@2GW.t; tw/

@t2
D 0 : (2.317)

The Green’s function after the interaction is thus the superposition of G0 and GW .
Regarding the interaction part, we choose the general solution of the homogeneous
equation

d2f .t/

dt2
D 0 (2.318)

as an ansatz, i.e., we have

GW.t; tw/ D A C B � t (2.319)
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with so far unknown coefficients A and B. These coefficients are calculated from the
two conditions

G.tw � �; t0/ D G.tw C �; t0/ I � ! 0 (2.320)

and

cp �
�
@G.t; t0/
@t

�
tDtw��

D
�
@G.t; t0/
@t

�
tDtwC�

I �1 � cp � 1 (2.321)

we impose additionally on the Green’s function G.t; t0/. These two conditions are
representing the interaction of the point mass with the wall. Condition (2.320)
indicates that there is no abrupt change in the position of the point mass. Parameter
cp D �1 in condition (2.321) characterizes an ideal elastic collision, whereas
�1 < cp � 0 is characteristic for an inelastic collision. If cp D 1 there will be
no interaction—the point mass simply moves uniformly with its initial velocity v1.
And, finally, 0 < cp < 1 represents an interaction that results in a weakening of the
initial momentum of the point mass but without a change in direction of its motion.
Applying these condition we thus have

B D .cp � 1/
m

(2.322)

A D � .cp � 1/
m

� tw (2.323)

for the coefficients and

GW.t; tw/ D .cp � 1/
m

� .t � tw/ (2.324)

for the interaction part of the Green’s function. Inserting this expression into (2.316)
provides finally for the total Green’s function

G.t; t0/ D .t � t0/
m

� H.t � t0/ C .cp � 1/

m
� .t � tw/ � H.t � tw/ : (2.325)

By use of representation (2.16) it allows us to calculate the state x.t/ of the point
mass at any time before or after the interaction. But we have to take into account that
there is a restriction regarding the primary source. This source can only act up to the
interaction time. The interaction part GW of the Green’s function could otherwise
no longer considered to be a solution of the homogeneous equation. But this was a
precondition in the above treatment. Now, let us consider two simple examples.
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The impressed source (2.80) may act at time t0 D 0 on a point mass that is at rest
in x D 0. Its state of motion is then given by

x.t/ D
Z tC

0

.t � t0/
m

� �.t0/ dt0 D v1 � t (2.326)

for any observation time t0 < t < tw. If t > tw holds for the observation time, with
Green’s function (2.324) and if cp D �1 is assumed (i.e., an interaction with an
ideal elastic wall), we get on the other hand

x.t/ D
Z tC

0

.t � t0/
m

� �.t0/ dt0 � 2 �
Z tC

0

.t � tw/

m
� �.t0/ dt0 D v1 � .2 tw � t/ :

(2.327)

Next, let us choose

�.t0/ D m � a � H.tw � t0/ (2.328)

as the primary impressed source that starts acting on the point mass at t0 D 0 with a
constant acceleration “a”. If observation times t < tw are considered, we thus get

x.t/ D
Z tC

0

.t � t0/
m

� �.t0/ dt0 D a

2
� t2 (2.329)

as the resulting state of motion. But for any observation times after the interaction
with an ideal elastic wall

x.t/ D
Z tw

0

.t � t0/
m

� �.t0/ dt0 � 2 �
Z tw

0

.t � tw/

m
� �.t0/ dt0 D

3a

2
.tw/

2 � a � tw � t (2.330)

is the corresponding state of motion. However, if the constant source (2.328) is
acting on the point mass beyond tw, for any observation time t > tw we have to
use relation (2.16) with a source according to (2.81) but with initial momentum and
initial position calculated from (2.329).

The question of energy conservation and its dependence on the parameter cp can
also be answered in a straightforward way. We have only to compare the kinetic
energy before and after the interaction. If applied to the Green’s function condition

�
@G0.t; t0/

@t

�2
�
�
@G.t; t0/
@t

�2
D 0 (2.331)



76 2 Green’s Functions of Classical Particles

must hold, with G0 and G given by (2.122) and (2.325). As a result and in accordance
with our experimental experience

cp D ˙1 (2.332)

are the two cases (i.e., no interaction and the interaction with an ideal elastic wall)
where we have energy conservation. Thus we may state that an energy-conserving
interaction of a point mass with an ideal elastic wall is characterized by the two
conditions (2.320) and (2.321) with the parameter cp D �1.

This simple experiment allows us moreover to demonstrate the more general
understanding of Huygens’ principle discussed in the Prologue. According to this
understanding we may replace the above considered interaction for any observation
time t > tw by a corresponding induced source. That is, we can apply relation (2.16)
with the Green’s function G.t; t0/ according to (2.122) and the—now induced!—
source

�.t0/ D � m v1 � ı.t0 � tw/ C m v1 tw � dı.t0 � tw/

dt0
(2.333)

as the primary source, instead of the source (2.80). The second term on the right-
hand side represents nothing but the initial position x.t D tw/ at which the
interaction with the wall takes place.

The interaction of the simple harmonic oscillator with a wall can be solved in
exactly the same way as described above. But, now, G0 according to (2.50) must be
used in (2.316). The interaction part of the Green’s function can again be calculated
from the general solution (2.7) of the homogeneous equation of motion (2.5) and
from the two conditions (2.320) and (2.321). Juggling with the addition theorems of
the sine and cosine functions results finally in

G.t; t0/ D 1

m!
� sin!.t � t0/ � H.t � t0/

C 1

m!
� .cp � 1/ � cos!.tw � t0/ � sin!.t � tw/ � H.t � tw/ : (2.334)

cp D 1 provides again the Green’s function of the simple harmonic oscillator.
That is, this represents the case of no interaction. From expression (2.334) we see
moreover that switching on the interaction with the wall at a time tw when the
oscillator is in a turning point (this happens if cos!.tw � t0/ D 0!) has no impact on
the state of motion. And, finally,

"�
@G0.t; t0/

@t

�2
�
�
@G.t; t0/
@t

�2#
C !2 �	G 2

0 .t; t
0/ � G 2.t; t0/


 D 0 (2.335)

is now the corresponding condition for energy conservation.
Exercise: Verify that (2.335) holds for the two parameters given by (2.332).
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2.7.2 Temporary Friction

The second example is concerned with the following situation: The initial step is
identical with the foregoing example. That is, a point mass of mass m rests on a
horizontal plane at x D 0. The primary source (2.80) is again acting at time t D t0
on this point mass. As a result it starts moving with constant velocity v1 along the x-
axis as before. But, now, let us assume the existence of a temporary friction between
t D tw

1 and t D tw
2 . For times t > tw

2 the point mass continues moving frictionless.
The Green’s function of the whole process is decomposed according to

G.t; t0/ D G0.t; t
0/ C G.R/

W .t; tw
1 / � H.t � tw

1 / � H.tw
2 � t/ C

GW.t; t
w
2 / � H.t � tw

2 / : (2.336)

G0.t; t0/ therein represents again the part before the interaction (the friction). It is
identical with (2.122). The interaction part G.R/

W .t; tw
1 / is constructed from the general

solution of the homogeneous equation of motion

@2G.R/
W .t; tw

1 /

@t2
C 2 � � @G.R/

W .t; tw
1 /

@t
D 0 (2.337)

in the presence of friction. This general solution reads

G.R/
W .t; tw

1 / D A C B � e�2� t : (2.338)

The unknown coefficients A and B are determined by use of the additional
conditions (2.320) and (2.321). Due to the smoothness requirement with respect
to the momentum at t D tw

1 these conditions must be applied with cp D 1. A
straightforward calculation provides

G.R/
W .t; tw

1 / D G0.t
w
1 ; t/ C G.R/

0 .t; t
w
1 / : (2.339)

G0.tw
1 ; t/ and G.R/

0 .t; t
w
1 / are given by (2.122) and (2.127). We have to repeat this

procedure at t D tw
2 to cover the transition to the final frictionless motion. The

general solution (2.319) of the homogeneous equation (2.317) is used as an ansatz
for the part GW of the Green’s function in (2.336). The unknown coefficients are
again calculated from the additional conditions (2.320) and (2.321) with cp D 1.
This gives

GW.t; t
w
2 / D G0.t

w
1 ; t/ C G.R/

0 .t
w
2 ; t

w
1 / C e �2�.tw2 �tw1 / � G0.t; t

w
2 / : (2.340)

All parts of (2.336) are thus determined. Energy conservation (2.331) holds only if
� D 0 or if tw

1 D tw
2 , as one may expect. The above described procedure allows us
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to couple several successive interaction processes. But let us now turn toward some
more sophisticated interaction processes.

2.8 Particle Scattering on a Rigid Sphere and Kepler
Problem

This section is concerned with the well-known scattering of a point mass on a rigid
sphere but considered again through the glasses of a Green’s function. It turns out
that this Green’s function is nothing but a slight modification of the Green’s function
of the simple harmonic oscillator. It is demonstrated moreover that the same Green’s
function in conjunction with an appropriate source can be used to solve the well-
known Kepler problem.

2.8.1 Transformation of the Equation of Motion into Polar
Coordinates

Starting from the conservation of the angular momentum polar coordinates are more
appropriate for our purposes. That’s because the plane of motion of both interaction
processes is located perpendicularly to the angular momentum and thus restricted
to a simpler 2-dim. situation. The relations between the unit vectors in Cartesian-
and polar coordinates are summarized in Table 2.1. The same relations hold for the
components of a given vector in one of these coordinate systems. But regarding
the problems of our interest, in polar coordinates we face the additional difficulty
of getting nonlinear equations of motion. This results from the fact that the unit
vectors in polar coordinates are no longer constant with respect to time. Velocity
and acceleration in polar coordinates are given by

Ev D vr � Or C v
 � O
 D Pr � Or C r P
 � O
 (2.341)

and

Ea D ar � Or C a
 � O
 D 	Rr � r P
2
 � Or C 	
r R
 C 2 Pr P

 � O
 : (2.342)

Table 2.1 Relations between
the unit vectors in Cartesian-
and polar coordinates

Ox Oy
Or cos
 sin

O
 � sin
 cos 
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The two equations of motion

d2x.t/

dt2
D �x.t/

m
(2.343)

d2y.t/

dt2
D �y.t/

m
(2.344)

in the x-y-plane of a Cartesian coordinate system are therefore transformed into the
two equations

Rr � r P
2 D �r.t/ (2.345)

r R
 C 2 Pr P
 D 1

r
� d

dt

	
r2 P

 D �
.t/ (2.346)

in polar coordinates, where

�r.t/ D cos
 � �x.t/

m
C sin 
 � �y.t/

m
(2.347)

�
.t/ D � sin 
 � �x.t/

m
C cos
 � �y.t/

m
: (2.348)

These are two coupled and nonlinear differential equations. It is therefore more
convenient—and this is the usual way described in textbooks—to consider the
inverse of the radius u.
/ D 1=r.
/ as the state function , and the angle 

as the independent variable. It is moreover required that the source term �
.t/
in equation (2.346) is identical zero. This corresponds to the initially assumed
conservation of the angular momentum

jLj D m r2 P
 D m � h D const: : (2.349)

A nonzero �
.t/, on the other hand, would destroy the invariance of the Lagrangian
with respect to rotation in space. Combining Eqs. (2.349) and (2.345) provides

Rr � h2

r3
D �r.t/ : (2.350)

Applying the chain rule

Pr D dr.
/

d

� P
 (2.351)
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and taking once again P
 from Eq. (2.349) allows us to reformulate the two
Eqs. (2.345) and (2.345) into

Pr D h

r2
� dr.
/

d

(2.352)

Rr D h2

r4
� d2r.
/

d
2
� 2 h2

r5
�
�

dr.
/

d


�2
: (2.353)

Now, using u.
/ D 1=r.
/ and the corresponding derivatives

dr.
/

d

D � 1

u2
� du.
/

d

(2.354)

d2r.
/

d
2
D � 1

u2
� d2u.
/

d
2
C 2

u3
�
�

du.
/

d


�2
; (2.355)

Eq. (2.350) can finally be converted into

d2u.
/

d
2
C u.
/ D � 1

u2 h2
� �r.t/ D �u.
/ : (2.356)

In addition, from (2.352), (2.354), and (2.349) we get the relations

v
 D h � u.
/ (2.357)

vr D � h � du.
/

d

: (2.358)

for the components of the velocity in polar coordinates given by (2.341).
Equation (2.356) is still a nonlinear equation as one can see from the right-hand

side. Let us therefore discuss some special sources which result in an elimination of
this nonlinearity.

2.8.2 Sources of the Scattering Problems

The forceless, uniform motion of a point mass in distance b parallel to the x-axis
of a Cartesian coordinate system is our first example (see Fig. 2.7). This state of
motion represents the asymptotic free state before the interaction with the rigid
sphere, according to our understanding of the considered scattering problem. We
will therefore shift the corresponding primary impressed source with respect to time
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Fig. 2.7 Forceless motion of
a point mass in distance b
parallel to the x-axis if
considered in polar
coordinates

y

x

b
r

φ

and position to infinity. That is, we use

�x.t
0/ D � m vx � ı.t0 C t01/ I vx > 0 (2.359)

�y.t
0/ D 0 (2.360)

as the primary impressed source in the Cartesian coordinate system (see also
Sect. 2.1.5). This corresponds to an initial momentum Ep D �m � vx applied at
time t0 D �t01 D �1 to the point mass that is at rest in x D 1. By use
of (2.360) and x D 1 as the initial position 
0 D 0 holds for the initial angle
in polar coordinates. �
 in (2.348) thus becomes zero, i.e., the source (2.360) is
in agreement with the required conservation of the angular momentum. Distance
b denotes the so-called impact parameter. It can be related to the conservation of
angular momentum. Taking (2.349), the initial momentum, and the conservation of
the angular momentum into account provides the relations

h D b � vx (2.361)

P
 D u2 � h D const: : (2.362)

Next we use the following relation that holds for Dirac’s delta function:

ıŒ
0.t0/� D 1h
d
0.t0/

dt0

i
t0D�t01

� ı.t0 C t01/ : (2.363)

The denominator is identical with (2.362). Equation (2.359) may therefore be
replaced by

�x.t
0/ D � m vx h u2 � ı.
0/ : (2.364)
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Inserting this expression into (2.347) gives

�r.t
0/ D � vx h u2 � ı.
0/ : (2.365)

From (2.356) and (2.361) we thus get finally

�u.

0/ D 1

b
� ı.
0/ : (2.366)

This makes us very happy since the nonlinear term 1=u2 in (2.356) disappeared,
and, due to a nonzero impact parameter b, the initial source is already endowed with
an angular momentum. The source �u.


0/ which is equivalent to (2.366) but acting
on the point mass that is initially at rest in a finite position x in distance b to the x-
axis (this corresponds to the initial polar coordinates 
0 D 
0 and r0 D r0) is given
without any comments. It reads

�u.

0/ D cos
0

b
� ı.
0 � 
0/ C sin 
0

b
� dı.
0 � 
0/

d
0 : (2.367)

We will see shortly that both initial sources result indeed in the same state of motion
u.
/.

The Kepler problem and the corresponding asymptotic free states require the
consideration of the forceless, uniform motion of a point mass as presented in
Fig. 2.8. This straight line differs from the line shown in Fig. 2.7 in the angle
 it forms with the x-axis. The corresponding primary source with an initial
momentum—if again shifted to infinity—is then given by

�u.

0/ D 1

b
� ı.
0 �  / : (2.368)

Fig. 2.8 Forceless motion of
a point mass that must be
considered to solve the
Kepler problem
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The relation (2.361) between h and the impact parameter b must accordingly be
replaced by

h D b � vr1
D b � vx � cos (2.369)

that holds for large distances of the point mass from the scattering center. That is,
vr1

D vx � cos expresses the radial projection of the velocity vx in (2.361).
Another source results from the Newtonian potential. It results directly in a

radially symmetric force that is proportional to 1=r2, and, thus, already proportional
to u2. �u.


0/ reads therefore

�u.

0/ D K

h2
; (2.370)

where

K D � � M : (2.371)

M and � therein denote the mass of the Sun (the central mass) and the gravitational
constant. This source also avoids the nonlinear term in (2.356). Now we are prepared
to solve the two scattering problems.

2.8.3 Solving the Scattering Problems

The equation of the Green’s function related to (2.356) is given by

d2G.
; 
0/
d
2

C G.
; 
0/ D ı.
 � 
0/ : (2.372)

This equation is obviously identical with (2.21) of the simple harmonic oscillator
if m D k D 1 is used, and if t; t0 are replaced by 
; 
0. The solution of this
latter equation is already known. It is given by (2.50). The corresponding solution
of (2.372) reads therefore

G.
; 
0/ D sin.
 � 
0/ � H.
 � 
0/ : (2.373)

But we have to find out the conditions which will allow us to use relation

u.
/ D
Z 
C

0

G.
; 
0/ � �u.

0/ d
0 (2.374)

together with Greens function (2.373) and the sources �u.

0/ considered above to

calculate the state u.
/. To this end, let us go back to the situations depicted in
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Figs. 2.7 and 2.8. Regarding Fig. 2.7 we get

u.
/ D 1

r.
/
D sin


b
; (2.375)

and from Fig. 2.8 we get correspondingly

u.
/ D 1

r.
/
D sin.
 �  /

b
: (2.376)

To find out whether the state u.
/ represents a uniform motion or an acceleration
requires the knowledge of the temporal behaviour of the angle 
. Because of

x.t/ � sin 
.t/ D b � cos
.t/ (2.377)

this is given by


.t/ D arccot

�
x.t/

b

�
(2.378)

for the motion of Fig. 2.7, for example. But independent of this aspect we have the
following two characteristic features of these two motions in polar coordinates, and
with 
 as the independent variable:

• The independent variable 
 is strictly monotonic increasing. Therefore, as
already known from the relation between time and Causality, 
 � 
0 holds with

0 and r0 being the initial angle and radius related to the primary source. On the
other hand, the point mass rests in a certain point of space if 
 � 
0.

• If 
 D 0 and 
 D � , or if 
 D  and 
 D � C  (according to the motions
depicted in Figs. 2.7 and 2.8) we have u.
/ D 0. That is, in these asymptotic
free cases before and after the interaction r.
/ becomes infinitely large. And,
because of relation (2.357), the corresponding angular component of the velocity
becomes zero but not its radial component.

Therefore and in agreement with the requirement for the Green’s function of the
harmonic oscillator with respect to time the smoothness condition

lim
�!0

G.
0 C �; 
0/ D 0 (2.379)

with respect to 
 is also required for the Green’s function of (2.372). Due to the
above mentioned features, and by use of Green’s theorem (2.22) and the Reciprocity
condition (2.23) (with t replaced by 
 in these last two relations!) we are indeed
able to derive the integral relation (2.374) with the Green’s function (2.373).
The derivation follows the same way described already for the simple harmonic
oscillator. One may get a first confirmation of the correctness of this relation if the
known solution (2.375) may be derived from the sources (2.366) and (2.367). That
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Fig. 2.9 Geometry of
particle scattering on a rigid
sphere

y

x

b
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this really happens if (2.366) is used together with (2.373) in (2.374) is easy to see.
On the other hand, using (2.367) results at first in

u.
/ D 1

b
� Œcos
0 � sin.
 � 
0/ C sin 
0 � cos.
 � 
0/� : (2.380)

Applying the addition theorems of sin.
 � 
0/ and cos.
 � 
0/ provides
again (2.375). It is exactly the second term of (2.367) with its first derivative of
Dirac’s delta function that makes sure that despite of condition (2.379) u.
0/ > 0

for every finite initial angle 
0 !
Exercise: Show that the solution (2.376) follows also from (2.373), (2.374),

and the source (2.368).
Let us now turn toward the solution of the scattering problems of our actual

interest. The geometry of the scattering problem of a point mass on a rigid sphere
with radius r D a is depicted in Fig. 2.9. The point mass hits the surface of the
sphere at an angle of 
w. Regarding the assumption of a rigid sphere we require
the smoothness of the tangential component of the velocity in this surface point.
Due to the spherical geometry the tangential vector agrees with the unit vector O
 in
polar coordinates. Because of (2.357) and in analogy to (2.320) we thus have the
additional condition

G.
w � �; 
0/ D G.
w C �; 
0/ I � ! 0 : (2.381)

The normal component of the velocity agrees with the radial unit vector Or in case of
a spherical scatterer. Due to the jump of this component it follows from (2.358) and
in analogy to (2.321)

cp �
�
@G.
; 
0/
@


�

D
w��

D
�
@G.
; 
0/
@


�

D
wC�

I �1 � cp � 1 : (2.382)
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cp D �1 must be used for the rigid sphere, and cp D 1 corresponds to “no sphere”
(i.e., to “no scattering”). The two features with respect to the angles we mentioned
above in conjunction with the motions represented in Figs. 2.7 and 2.8 are still valid
for the scattering problems at hand. Regarding the scattering problem on a rigid
sphere, and in dependence on the impact parameter b, angle 
 can take only values
between 0 and � . A limiting angle of 
g D � belongs to the asymptotic free state
after the scattering process and is the result of an impact parameter b � a (i.e., there
is in fact no scattering). However, if b < a we have 
g < � . This limiting angle is
asymptotically achieved if r tends to infinity after the scattering. It can therefore be
calculated from

u.
/ D 0 : (2.383)

The Green’s function of this scattering process follows directly from (2.334) but
with all time variables replaced by corresponding angles. This provides

G.
; 
0/ D G0.
; 

0/ C GW.
; 


0/ � H.
 � 
w/ ; (2.384)

where

GW.
; 

0/ D .cp � 1/ � cos.
w � 
0/ � sin.
 � 
w/ ; (2.385)

and with G0.
; 

0/ according to (2.373). If 
 > 
w holds, i.e., after the interaction

with the sphere, we thus get from (2.374), by use of the source (2.366), and
from (2.384)

u.
/ D 1

b
� �cp � cos
w � sin.
 � 
w/ C sin 
w � cos.
 � 
w/

�
: (2.386)

In case of a rigid sphere with cp D �1, u.
/ D 0 if 
 D 2
w. The limiting angle is
accordingly given by


g D 2 � 
w : (2.387)

This corresponds with our experimental experience. The scattering angle � can be
introduced via the relation

� WD � � 
g : (2.388)

In case of the rigid sphere we thus get

� D � � 2 � 
w (2.389)
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(see Fig. 2.9). At the interaction point on the surface of the sphere we have on the
other hand

sin
w D b

a
: (2.390)

Then, from (2.389) and (2.390) we get the relation

b.�/ D a � sin

�
.� � �/
2

�
D a � cos

�

2
(2.391)

between the impact parameter b and the scattering angle � . If the scattering angle
is measured in a certain scattering experiment with a rigid sphere and a known
impact parameter we are then able to deduce the radius of the sphere. Especially this
last situation reflects the importance of scattering experiments—to gain information
about the interaction process by looking at the asymptotic free state after the
interaction. However, such an scattering experiment with only one point mass and
one given impact parameter is not very effective. It is much more convenient to
send a large number of point masses with different impact parameters toward the
rigid sphere. Without going into details (we are mainly interested in describing
well-known processes in terms of Green’s functions) it should be mentioned that
the so-called “differential scattering cross-section” is then an appropriate quantity
to characterize such a statistical scattering experiment. It is defined according to

d�

d	
WD b.�/

sin �
�
ˇ̌
ˇ̌db.�/

d�

ˇ̌
ˇ̌ ; (2.392)

where d	 D sin �d�d
 denotes the differential solid angle in spherical coordi-
nates. The angle 
 2 Œ0; 2�� therein represents the azimuthal angle in spherical
coordinates and should not be confused with the angle 
 of the considered polar
coordinate system. Angle � 2 Œ0; �� in d	 can on the other hand be identified with
the scattering angle introduced before. From (2.391) it follows

d�

d	
D a2

4
: (2.393)

The integral

� D
Z �

d�

d	

�
d	 (2.394)

denotes the “total scattering cross-section”. This quantity is also of some importance
in scattering experiments. Scattering of point masses on a rigid sphere of radius
r D a thus provides

� D � � a2 : (2.395)
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That is, the total scattering cross-section is independent of � and identical with the
corresponding circular cross-section. We will come back to these quantities at the
end of Chap. 4. To conclude and before we will center our attention on the Kepler
problem it may be useful to mention some situations which go beyond scattering on
a rigid sphere.

The approach described above can be applied without major changes to the
scattering problem of a point mass on an inelastic sphere. This scattering process
is characterized by a coefficient cp > �1. The limiting angle 
g can be determined
numerically from Eq. (2.386) and condition u.
/ D 0. But we will not end up with
relation (2.387). This may be considered as a hint that scattering on an inelastic
sphere comes along with a deformation of the spherical boundary around the impact
point. b.�/ and its dependence on the coefficient cp can also be determined in the
same way. This would allow us to deduce the coefficient cp from a corresponding
scattering experiment if the radius of the sphere is given. A major effort is required
if particle scattering on a rigid but non-spherical object is considered. This applies
to the spheroidal object presented in Fig. 2.10, for example. The characteristic
behaviour of an monotoneously increasing angle 
 for the ongoing motion of
the point mass is still valid. This allows us to use (2.373) as the unperturbed
Green’s function even in this case. But the interaction part of the Green’s function
cannot be taken from (2.385). This part must be calculated again by use of the
method described in Sect. 2.7. This becomes necessary since the conditions (2.381)
and (2.382) are no longer valid. This is due to the fact that the unit vectors Or and
O
 in polar coordinates are no longer identical with the tangential and normal vector
at a certain surface point of the nonspherical object. The tangential plane and the
normal vector at a certain surface point are now the result of a combination of these
unit vectors. Only afterwards the smoothness condition of the tangential component
and the jump condition of the normal component can be applied . This can be done
only numerically in most of the cases.

Exercise: Development of a numerical algorithm to study particle scattering
on a rigid spheroidal body—wouldn’t it be a nice project in numerical physics?

Fig. 2.10 Geometry of
particle scattering on a
spheroidal object located with
its major axis on the x-axis
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Fig. 2.11 Geometry of the
motion of a point mass on a
Kepler hyperbola in the
gravitational field of a central
mass M fixed at the focal
point on the x-axis
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x
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Hint: The boundary surface of a spheroidal body is given by

r.�/ D a �
�

cos2 � C
�a

b


2 � sin2 �

��1=2
(2.396)

in spherical coordinates (see Chap. 4), where “a” denotes the semi-axis along
the z-axis, and “b” denotes the semi-axis along the x-axis. The aspect ratio is
given by

av D a

b
: (2.397)

av < 1 and av > 1 are the aspect ratios of oblate and prolate spheroids,
respectively. av D 1 provides the spherical body with radius r D a. Note that,
in contrast to the spherical body the tangential plane at each surface point
becomes a combination of the unit vectors Or and O� . Calculate the tangential
planes first and apply the law of reflection afterwards if the rigid spheroidal
body is considered.

The motion of a point mass on a Kepler hyperbola in the gravitational field of
a mass M fixed at a focal point is depicted in Fig. 2.11. The primary source that
causes the initial motion of the point mass at infinity may be given by the initial
momentum (2.368), according to the situation depicted in Fig. 2.8. This source
is required since the gravitational force alone is unable to induce a motion of a
point mass that is initially located at an infinite distance from the central mass M.
Without (2.368) the point mass would simply rest at infinity. The sum of both
sources (2.368) and (2.370) are therefore needed to describe the motion of the point
mass in the gravitational field. The state of motion u.
/ is then obtained from

u.
/ D
Z 


 

sin.
 � 
0/ �
�
ı.
0 �  /

b
C K

h2

�
d
0 : (2.398)
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This gives

u.
/ D K

h2
�
�
1 C h2

K b
� sin.
 �  / � cos.
 �  /

�
: (2.399)

Now, let us transform this last expression into

u.
/ D K

h2
� Œ 1 C � � cos.
 � ˆ0/� ; (2.400)

or rather

r.
/ D h2=K

1 C � � cos.
 � ˆ0/
; (2.401)

since these expressions are more appropriate to discuss the Kepler motion. Applying
the addition theorems to (2.399) and (2.400) results in the following to equations to
determine � and ˆ0:

� � cosˆ0 D �
�

cos C h2

K b
� sin 

�
(2.402)

� � sinˆ0 D sin � h2

K b
� cos : (2.403)

From Fig. 2.11 we can see moreover that the smallest distance between the moving
point mass and the fixed mass M is achieved if 
 D � . Since the smallest value
of r.
/ results on the other hand from (2.401) and 
 D ˆ0 we choose ˆ0 D � .
Inserting this value into (2.402) and (2.403) gives

� D cos C h2

K b
� sin (2.404)

0 D sin � h2

K b
� cos ; (2.405)

to determine �. To this end we have to take the square of both equations and have to
add the results subsequently. Then

�2 D 1 C
�

h2

K b

�2
; (2.406)

or

� D ˙
"
1 C

�
h2

K b

�2#1=2
: (2.407)
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Instead of (2.401) we may therefore write

r.
/ D h2=K

1 � � � cos

; (2.408)

with � given by (2.407) but with the positive sign according to Fig. 2.11. This is the
well-known expression in polar coordinates that is used in many textbooks to discuss
the Kepler motion. The different cases—motion on a hyperbola, on a parabola, and
the elliptical orbit around M—are then the result of � > 1, � D 1, and � < 1, or of
the related energies E > 0, E D 0, and E < 0, respectively. In what follows we will
therefore derive the relation between � and the energy as well as the dependence of
the impact parameter on the scattering angle � for the motion on a hyperbola.

The initial momentum acting on the point mass with mass m that rests in an
infinite distance from mass M transfers the initial energy

Ei D m

2
� v2r1

(2.409)

to this point mass. Or, if taking (2.369) into account, we may also write

Ei D m h2

2 b2
: (2.410)

The gravitational potential of Mass M does not contribute to this energy at the
beginning, due to the infinite distance. But in the further course of motion and as a
consequence of (2.341) and the energy conservation we get

m

2
� v2r1

D m

2
� 	Pr2 C r2 P
2
 � m K

r
: (2.411)

Inserting (2.410) into (2.406) results in

�2 D 1 C 2 h2

m K2
� Ei : (2.412)

This combines the parameter � with the initial energy. Thus it becomes clear that
such an initial momentum and in the absence of any loss in the further course of
motion (by friction or by active deceleration, for example) an elliptical orbit of
the point mass around M is impossible. The point mass escapes asymptotically to
infinity, as shown in Fig. 2.11. The final asymptotic motion is again characterized
by u.
/ D 0 or r.
/ D 1. From (2.408) we thus get the following relation between
the two angles ˙ the initial and final asymptote form with the x-axis, and for the
parameter �:

cos.˙ / D 1

�
: (2.413)
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The scattering angle � reads on the other hand

� D � � 2 : (2.414)

Equation (2.413) can therefore be rewritten into

sin
�

2
D 1

�
: (2.415)

Using relations

tan˛ D sin ˛

.1 � sin2 ˛/1=2
; (2.416)

(2.369), and (2.412) allows us again to relate the scattering angle to the impact
parameter b, as already done in conjunction with particle scattering on a rigid
sphere. We obtain

b.�/ D K m

2Ei
� 1

tan �
2

: (2.417)

And, finally, the differential scattering cross-section (2.392) for the gravitational
potential (as well as for the Coulomb-potential if K is taken adequately) gives

d�

d	
D
 

K m

4Ei sin2 �
2

!2
: (2.418)

This is the well-known Rutherford scattering cross-section. But due to the �-
dependent denominator in (2.418) the corresponding total cross-section (2.394)
is now becoming divergent if � tends to zero. This raises the question about
the experimental importance of the total cross-section for such potentials with an
infinite range. The scattering of a point mass into the forward direction � D 0would
require an infinitely large initial energy or an impact parameter b that is infinitely
far away from the central mass M.

The above described treatment of the Kepler problem by use of a Green’s
function allows me to be more specific about an aspect discussed in the Prologue
from a more general point of view. It is concerned with the importance of the
source/cause within the idea of Green’s functions and the resulting possibility
to relate different levels of our experimental or theoretical experience. Within
the framework of Classical Mechanics only states of motions are considered the
sources/causes of which are not explained by the theory itself. These impressed
sources/causes are only justified by our experimental experience. This experience
can be gathered, for example, by testing the correctness of relation (2.418) and
the used model for the gravitational potential as the impressed source. We have
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to think about this source seriously if a discrepancy between the observations and
the model is detected. It is exactly the situation that comes across with Mercury’s
precession that cannot be described by Newtonian’s gravitational potential alone.
A more precise description is provided within the framework of General Relativity.
Using the Schwarzschild metric, for example, it can be shown that we get a much
better quantitative agreement with the observations if the term

V.r/ D K jLj2
r3

(2.419)

is added to Newtonian’s gravitational potential (for details see Carroll (2003), for
example). That is, the Schwarzschild metric can be considered as a theory of the
source of Mercury’s motion. However, in General Relativity the mass M of the
central body, or more general, the stress-energy tensor is now considered as an
impressed source that is justified only by our experience. It cannot be derived by
the theory itself. By the way, regarding the scattering of a point mass on a rigid
sphere we face a similar situation. The interaction with the surface of the sphere—
expressed in terms of the special boundary conditions (2.381) and (2.382)—are also
justified by our experimental experience only.

Regarding Newtonian’s physics there is another aspect frequently discussed in
the literature. It is concerned with the point of view that it implies instantaneous
action at a distance. That is, according to this point of view a planet would
respond without delay to an abrupt displacement of the sun. But I am sceptic
about this interpretation of Newtonian’s mechanics. I am rather convinced that we
should not make such a statement within this theory since it is concerned with the
nature of the source (2.370) (the sun in our example), and, therefore, outside this
theory. According to my understanding Newtonian’s mechanics tacitly assumes the
existence of this source (this is what we called an impressed source in the Prologue),
justified by the experience, that this source together with the underlying equation
of motions can be brought within a certain accuracy into correspondence with our
observations. It is not quite clear to me how to solve the above mentioned problem
of an abrupt displacement of the sun and the resulting effect on a planet within
Newtonian mechanics. To my mind only General Relativity provides an approach
to this problem. The situation seems to me comparable to what is known from
steady state theories of classical fields, like plane wave scattering, for example.
The question of how to accomplish such a steady state situation cannot be answered
within a steady state theory itself. It is used only as an appropriate ansatz to separate
the time dependence. Its success is again justified only by the agreement with
corresponding experiments.



Chapter 3
Green’s Functions of Classical Fields

Metaphysics is the desperate attempt of the physicist to escape
Faraday’s cage of rationality

Solving boundary value problems of electromagnetic fields was the historical
starting point for the development of the Green’s function formalism. The person
after whom these functions were named—George Green—published an essay in
1828 in which he introduced special functions to solve certain boundary value
problems of the Poisson equation (Green 1850, 1852, and 1854). Unfortunately,
this essay sank into oblivion shortly after its publication until it was rediscovered in
1846 by the later Lord Kelvin. In a paper, published in 1993, F. Dyson considered
the invention of these functions as a methodical revolution in physics which was as
important as the invention of computers in our days (Dyson 1993).

Today there exist a vast amount of literature concerned with classical fields and
the corresponding mathematical tools and solution methods. I want to mention only
the two volumes “Methods of Theoretical Physics” by P.M. Morse and H. Feshbach
(Morse and Feshbach 1953) and the book “Partial Differential Equations in Physics”
by A. Sommerfeld (Sommerfeld 1949) since these books were constant companions
during my scientific activities. Because of the wealth of material the considerations
in the following two chapters are restricted to a selected number of field equations
and the corresponding Green’s functions. However, the discussed solution methods
are quite general and applicable also to other problems. Regarding the scattering
problems considered in the next chapter we place a particular focus on the S- and
T-matrix as the decisive elements of the corresponding Green’s functions. But let
us start this chapter with a few comments on the field concept in physics which are
related to the points of view formulated in the Prologue.

3.1 Comments on the Field Concept

It is not even a simple task to find a satisfactory definition of the term field in
physics. Looking back on my time at the university, the fields of physical interest
have been essentially defined as a characteristic state of space or part of the space
that will affect a physical object in this space (apply a force to it, etc.). Other
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definitions coincide more or less with this definition. A quite instructive historical
overview of the field concept in physics can be found in (McMullin 2002), for
example. Accepting this definition as a first guess, and from the discussion of the
categories object and state in the Prologue we are thus running into the strange
situation that not the field but the space represents the corresponding object with
the field being its state—as well as we have considered the state of motion x.t/
as the characteristic state of the object point mass in the foregoing chapter. That
in General Relativity the space itself has become the object of investigation is an
argument in favour of this point of view. And also the notation Green’s function of
the free space (this is the Green’s function of the equation under consideration but
with no additional boundary conditions involved) we will frequently encounter in
this chapter seems to support this idea at least linguistically. On the other hand, our
entire sensory perception, and, therefore, our entire physical experience is related
to space and time. That is, space and time establish the framework of our physical
experience, as expressed by the term laboratory system and the related measure and
boundary conditions. Such a laboratory system can often be represented by a three-
dimensional Cartesian coordinate system and a clock and must not be confused
with the space of the General Relativity that results from a given stress-energy
tensor. Throughout this book, space will therefore be understood as an appropriate
laboratory system that fits the problem we intend to solve. By the way, also Quantum
Mechanics is such a “laboratory system-related” theory.

Starting from a given laboratory system the field can be considered as a nonlocal
object within this laboratory system that is characterized by a state that depends
on position and time, in general. Especially since the work of Faraday, Maxwell,
and Einstein the field has become a substantial part of our physical reality and is
considered as an object of its own. Since that time field theories form an essential
part of modern physics. And also our everyday life is infused with fields—especially
with electromagnetic fields. But despite their ubiquity it is quite difficult to get a
clear idea of electromagnetic fields. In the second volume of the “Feynman Lectures
on Physics” Feynman wrote: I see some kind of vague shadowy, wiggling lines—here
and there is an “E” and “B” written on them somehow, and perhaps some of the
lines have arrows on them—an arrow here or there which disappears when I look
to closely at it (Feynman et al. 1989). However, it is in fact not the electromagnetic
field we perceive with our senses or measure with our instruments but their effect,
even if the underlying theory is a theory of the fields. A consequence of this is
the necessity to link the field to the quantities we really measure in an experiment.
Regarding the scattering problems considered in the next chapter the differential or
total scattering cross-sections are such observable quantities, for example. They are
related to the square of the state of the field in the far field. The same holds for the
probabilities in Quantum Mechanics calculated from the square of the probability
state vector. That this concept is also applicable to specific probability experiments
with classical objects is demonstrated in the Chap. 5. In contrast to this, the state
of motion x.t/ of a point mass in the foregoing chapter was a directly observable
quantity.
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However, it is our main goal also in this chapter to relate the state  .x; t/ of a
certain field at position x and time t of a laboratory system to its generating source
�.x0; t0/ via the integral expression

 .x; t/ D
Z tC

0

Z
�0

G.x; tI x0; t0/ � �.x0; t0/ d� 0 dt0 : (3.1)

� 0 represents the volume within volume � of the laboratory system that is occupied
by the source. With this relation we take up again the position that without any
source there will be no state of a field. Since the considered laboratory system is
also defined by its enclosing boundaries special conditions on these boundaries
must be taken into account to end up with (3.1). It is important to note that
these conditions are justified only by our experimental experience. They are not
a priori given. Moreover and as already done in the foregoing chapter, the a priori
existence of any initial state  .x; 0/ and/or initial “velocity” Œ@ .x; t/=@t�tD0 of the
state is excluded from the very beginning. These initial conditions will again be
related to corresponding sources. But it will be demonstrated by several examples
that inhomogeneous boundary conditions can also be related to corresponding
sources. And, finally, beside the principle of contiguous action we have to take
again Causality and Reciprocity as basic principles of our physical experience
appropriately into account.

3.2 The Elastic String

Although the elastic string represents a quite simple physical object it allows us
in a straightforward way to discuss and demonstrate some of the methodical and
conceptual aspects regarding Green’s functions of classical fields. It is moreover
an example of a state—the displacement from its rest position—that can directly
be observed, i.e., that avoids transferring this state into an observable quantity by
an additional procedure. It is moreover demonstrated in this section that for the 1-
dim. situation the “classical method” of deriving the Green’s function, as it was
described in Sect. 2.5.1 of the foregoing chapter, can also be applied with benefit to
the Poisson equation, the wave equation, the Klein-Gordon equation, the equation of
telegraphy, and, as a limiting case of the latter, the diffusion equation. For problems
which do not depend on time (static problems or steady state problems with a
separable time dependence) we choose an ansatz that is in correspondence with the
principle of Reciprocity, i.e., with the experience that one can interchange source-
and observation points without changing the final observation. A similar approach
was used in the foregoing chapter, where the principle of Causality was taken into
account by the Heaviside function H.t � t0/ in ansatz (2.166). The principle of
contiguous action is considered by an appropriate ansatz for all the time-dependent
problems. It guarantees that only the physically meaningful time-like solutions are
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taken into account. For the reader who may be interested in more complex problems
of strings and membranes I want to call the attention to the book “Wave Motion in
Elastic Solids” by K.F. Graff (1991). But let us now start with the problem of an
ideal elastic string under the influence of a static force (the problem of the clothes
line).

3.2.1 One-Dimensional Poisson Equation

We are interested in the solution of the equation

d 2 .x/

dx2
D �.x/ (3.2)

with �.x/ representing again the source function which is now a function of position.
The corresponding equation of the Green’s function reads

d 2G.x; x0/
dx2

D ı.x � x0/ : (3.3)

It is an essential experience that it has no effect on our final observation if the source-
and observation points are interchanged. That is, the observation (the measurable
quantity) depends only on the spatial distance between source- and observation
point. This symmetry is again called Reciprocity, but now with respect to position
(and not with respect to time, as considered in the foregoing chapter). Applying
this experience to the Green’s function we require the fulfillment of the Reciprocity
condition

G.x; x0/ D G.x0; x/ : (3.4)

This condition is obviously fulfilled if

G.x; x0/ D F.jx � x0j/ D F.u/ (3.5)

is used as an ansatz with the so far unknown function F. At this point I want to
add the following remark: The fact that the considered field equation and the related
boundary conditions allow the mathematical proof of relation (3.4) is in the physical
literature often discussed as the proof of Reciprocity. But this will put the cart
before the horse, according to my understanding formulated in the Prologue. This is
because such a symmetry is primarily owed to our experimental experience within
a certain object space. Expressing this experience by an appropriate mathematical
condition is “only” a subsequent step. A different experience would us possibly
lead to a different equation and different boundary conditions which do not result
in (3.4). Or, in other words, an experience can never be proven. We can only accept
it. I will come back to this aspect in the chapter when discussing the Unitarity of the
S-matrix of scattering processes and its relation to energy conservation.
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But, now, let us ask for the function F of the Poisson equation. To this end we
insert ansatz (3.5) into Eq. (3.3), where we have to take the derivative (2.54) of the
absolute value u into account. We thus get

dF.u/

dx
D Fx D Fu � ux D Fu � �H.x � x0/ � H.x0 � x/

�
(3.6)

and

Fxx D Fuu � u2x C 2 � Fu � ı.x � x0/ D
Fuu C 2 � Fu � ı.x � x0/ D ı.x � x0/ : (3.7)

Please, note the abbreviation used for the derivatives. This will save some paperwork
and will be applied frequently in what follows! Next, we require that the function F
must be a solution of the homogeneous equation

Fuu D 0 : (3.8)

This gives the general solution

F.u/ D C1 � u C C2 : (3.9)

From the integration of the remaining part of (3.7) with respect to x from �1 to 1
we obtain the additional condition

ŒFu�uD0 D 1

2
: (3.10)

We thus get the Green’s function

G.x; x0/ D F.u/ D 1

2
� u C C2 D 1

2
� jx � x0j C C2 : (3.11)

Regarding the discontinuity of its first derivative at the source point x0 we have again

�
dG.x; x0/

dx

�xDx0C�

xDx0��
D 1 (3.12)

(see also (2.52) if m D 1!). As known from potential theory, potentials are
determined except for an arbitrary constant. Let us therefore choose C2 D 0 and
consider

G.x; x0/ D F.u/ D 1

2
� u D 1

2
� jx � x0j (3.13)

as the free-space Green’s function of the 1-dim. Poisson equation.
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To solve the problem of the ideal elastic string fixed at two points (let us say at
x D 0 and x D L) we have to take the homogeneous Dirichlet conditions

 .x D 0/ D  .x D L/ D 0 (3.14)

additionally into account. 0 � x � L is therefore the spatial region of our interest.
�.x/ represents the force applied to this string. For the corresponding Green’s
function we require also the fulfillment of these two boundary conditions,

G.x D 0; x0/ D G.x D L; x0/ D 0 : (3.15)

We add the general solution of the homogeneous equation to (3.13), as already done
in Sect. 2.7 of the last chapter,

G.x; x0/ D 1

2
� jx � x0j C QC1 � x C QC2 : (3.16)

This is nothing but an application of the well-known fact that the general solution of
the inhomogeneous equation can be represented by the sum of the general solution
of the homogeneous equation and a special solution of the inhomogeneous equation.
Constants QC1 and QC2 are determined afterwards by application of conditions (3.15).
Thus we get finally

G.x; x0/ D 1

2
� jx � x0j � 1

2
� .x C x0/ C x � x0

L
: (3.17)

It is obvious that conditions (3.4) and (3.12) are fulfilled. Moreover and in
accordance with our experience, it can be seen that the string has its strongest
displacement in x0 (see Fig. 3.1). Thus we have found the Green’s function that
represents the object “ideal elastic string fixed at the two points x D 0 and x D L”.
It is yet to be determined how we can find the solution of Eq. (3.2) by use of (3.17)
and for a given source �.x/. But to demonstrate that the Reciprocity relation (3.4)
follows from the homogeneous Dirichlet problem of the Poisson equation is also

Fig. 3.1 Green’s function of
an ideal elastic string that is
fixed at the two points x D 0

and x D L. An elementary
force is applied in x0 (the
problem of an elementary
sock on the clothes line)

G(x, x′)

x

Lx’

δ
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of our interest. As the attentive reader may possibly be surmise—these questions
are answered by use of Green’s theorem in close analogy to the way described in
Sect. 2.1.2.
‰.x/ and ˆ.x/ are any two functions defined in the spatial region of our interest.

Green’s theorem is then given by

Z L

0

�
‰.x/ � d2ˆ.x/

dx2
� ˆ.x/ � d2‰.x/

dx2

�
dx D

Z L

0

d

dx

�
‰.x/ � dˆ.x/

dx
� ˆ.x/ � d‰.x/

dx

�
dx D

�
‰.x/ � dˆ.x/

dx
� ˆ.x/ � d‰.x/

dx

�L

0

: (3.18)

In contrast to (2.22) the integration must now be performed over the entire spatial
region x 2 Œ0;L�. Replacingˆ.x/ by the Green’s function G.x; x0/ and‰.x/ by .x/,
applying the homogeneous Dirichlet conditions (3.14) and (3.15), and if taking
Reciprocity relation (3.4) into account results in the integral relation

 .x/ D
Z L

0

G.x; x0/ � �.x0/ dx0 (3.19)

we are looking for.
Exercise: Show that the Reciprocity relation (3.4) can be derived in exactly

the same way by replacing ‰.x/ by G.x; x0/ and ˆ.x/ by G.x; x00/, and if take
again the homogeneous Dirichlet conditions for both these Green’s functions
into account.

Let us now consider the simple example of a constant force acting at a certain
point xq. This source is given by

�.x/ D C � ı.x � xq/ : (3.20)

From (3.19) we thus get with (3.17)

 .x/ D C

2
� jx � xqj � C

2
� .x C xq/ C C � x � xq

L
(3.21)

for the displacement of the string under the influence of (3.20). It agrees with
the situation represented in Fig. 3.1. This is a nice example to demonstrate the
experience of Reciprocity. For this purpose we want to answer the following
question: The dashed line in Fig. 3.2 represents the solution (3.21), i.e., the solution,
if the force is acting in xq. Can we use this knowledge to construct the solution if
the same force is acting in the observation point xM? Based on the experience of
Reciprocity the answer is a clear “yes”’! First, we have to measure the displacement
a in xM if the force is acting in xq. Reciprocity expresses our experimental experience
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Fig. 3.2 Demonstration of
Reciprocity for the clothes
line problem under the
influence of force (3.20). The
dashed and full line represent
the displacement if this
source is acting in xq and xM ,
respectively

ψ(x)

x

LxqxM

a

C
C

that the same displacement is observed in xq if the same source is acting in xM. This
will allow us to construct the full line of Fig. 3.2. The experience of Reciprocity—
beside those simple applications—can be applied with benefit to estimate the
accuracy of numerical solutions of certain boundary value problems. This has been
demonstrated in (Rother and Kahnert 2013), for example, where it was applied to
plane wave scattering on nonspherical objects. We will come back to this special
aspect at the end of Chap. 4.

The next example is concerned with the clothes line problem under the influence
of a constant gravitational force given by

�.x/ D �c

T
� g D Cg : (3.22)

�c is a material parameter that represents the mass of the string per unit of length,
T is the tension of the string under the influence of an external force, and g is the
gravity acceleration. Using again (3.19) and (3.17) results in

 .x/ D Cg

2
� x � .x � L/ : (3.23)

We have now a parabolic displacement which is deepest at x D L=2. As these
examples show, Green’s functions can also be applied with benefit to run the
household.

Only homogeneous Dirichlet conditions have been considered so far. But what
happens with homogeneous von Neumann conditions, i.e., if the first derivative of
the displacement  .x/ at x D 0 and x D L is required to become zero? One may
expect that solving this problem should be also possible since the last term of (3.18)
becomes identical zero. Thus we would again end up with relation (3.19). However,
it can be seen from ansatz (3.16) that it does not work! This is because constant QC2
will always vanish for the first derivative. Thus we have only constant QC1 that can
be matched to one condition at a certain point. Regarding the Poisson equation von
Neumann conditions are therefore not of our interest. But it is of our interest to see
what is going on if we have to consider an inhomogeneous Dirichlet condition for
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the displacement, i.e., if

 .x D 0/ D 0

 .x D L/ D CL D konst: (3.24)

must hold while the homogeneous Dirichlet conditions (3.15) still apply to the
Green’s function. From Green’s theorem (3.18) it follows that the solution of (3.2)
is given by

 .x/ D  1.x/ C  2.x/ D
Z L

0

G.x; x0/ � �.x0/ dx0 C

CL �
�
@G.x; x0/
@x0

�
x0DL

: (3.25)

The second term on the right-hand side contains the derivative of the Green’s
function (3.17) with respect to the source point and provides the additional
contribution

 2.x/ D CL

L
� x : (3.26)

But the second term on the right-hand side of expression (3.25) can be replaced by
relation (3.19) if introducing the source

�L.x
0/ D � CL � dı.x0 � L/

dx0 (3.27)

acting in x0 D L, and if replacing  .x D L/ D CL by  .x D L/ D 0. This gives

 2.x/ D
Z L

0

G.x; x0/ � �L.x
0/ dx0 : (3.28)

Here we have a further example of how to replace an inhomogeneous condition by
an appropriate source, as already discussed in the context of an initial position and
initial momentum of the simple harmonic oscillator. Let us now turn our attention to
time dependent problems of other 1-dim. equations which can be used to describe
wave phenomena of the taut elastic string.

3.2.2 One-Dimensional Wave-, Klein-Gordon-, Telegraphy-,
and Diffusion Equation

We start with the 1-dim. wave equation

1

c2
� Gtt.x; tI x0; t0/ � Gxx.x; tI x0; t0/ D ı.x � x0/ � ı.t � t0/ (3.29)
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for the Green’s function. This equation is invariant under Lorentz transformation. c
denotes the velocity of a constant wave front (phase velocity). Regarding the taut
elastic string it is given by (see Graff (1991), for example)

c D
s

T

�c
: (3.30)

Next, we have to find an appropriate ansatz that will allow us again to apply our
“classical method” to derive the Green’s function. To this end we have to think
about the propagation of an effect caused by a source that is switched on in x0 at
time t0. Since we are generally interested in causal cause and effect relations we
restrict our considerations to the time-like region of the x-ct-plane represented in
Fig. 3.3. In this region we have

x0 � c
 � x � x0 C c
 ; (3.31)

where 
 D .t � t0/ � 0. This can be rewritten into


 � 1

c
� jx � x0j : (3.32)

In view of ds2 D c2 � dt2 � dx2 � 0, that holds in the time-like region, we introduce
the variable

v D
�
.t � t0/2 � 1

c2
� .x � x0/2

�1=2
� 0 : (3.33)

A second variable u is introduced by

u D .t � t0/ � 1

c
� jx � x0j : (3.34)

Fig. 3.3 Time-like region
(dotted area) in the x-ct-plane
with ds2 D c2 � dt2 � dx2 � 0.
This region allows causal
relations

ct

xx’

x′ − ct x′ + ct
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Choosing

G.x; tI x0; t0/ D F.v/ � H.u/ (3.35)

as an appropriate ansatz for the Green’s function of the 1-dim. wave equation, where
H.u/ is again the Heaviside function, is then justified by the fact that it ensures
the restriction of the solution to the time-like region from the very beginning.
A confession is appropriate at this point: I did not came to this ansatz in the
way described above. I was first simply looking at the known solution for the
Green’s function of the 1-dim. wave equation. Only afterwards I was seeking for a
justification from a more general point of view. But I was ultimately convinced from
the usefulness of this ansatz when I discovered that it can successfully be applied
to derive also the Green’s functions of the other 1-dim. equations, as we will see
shortly.

Starting from ansatz (3.35) the first and second derivative of the Green’s function
with respect to position and time are given by

Gx D Fv � vx � H C F � Hu � ux (3.36)

Gt D Fv � vt � H C F � Hu � ut (3.37)

and

Gxx D Fvv � H � v2x C Fv � vxx � H C Huu � F � u2x C
Hu � uxx � F C 2 � Fv � Hu � vx � ux (3.38)

Gtt D Fvv � H � v2t C Fv � vtt � H C Huu � F � u2t C
Hu � utt � F C 2 � Fv � Hu � vt � ut : (3.39)

Please, note that the arguments of the functions involved have been omitted for
the sake of convenience. But the arguments are identical with the variables of the
derivation (i.e., F is a function of v, H of u, u of x; t, and v in x; t). From (3.33)
and (3.34) we have furthermore

vt D .t � t0/
v

(3.40)

vx D � 1

c2
� .x � x0/

v
(3.41)

vtt D 1

v
� .t � t0/2

v3
(3.42)

vxx D � 1

c2
�
�
1

v
C 1

c2
� .x � x0/2

v3

�
(3.43)
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as well as

ut D 1 (3.44)

ux D � 1

c
� �H.x � x0/ � H.x0 � x/

�
(3.45)

utt D 0 (3.46)

uxx D � 2

c
� ı.x � x0/ (3.47)

and

Hu D ı.u/ (3.48)

u � ı.u/ D 0 : (3.49)

From (3.29) it follows

1

c2
� Gtt � Gxx D 1

c2
�
�

Fvv C Fv
v

�
� H C 2

c
� F � ı.u/ � ı.x � x0/ D

1

c2
�
�

Fvv C Fv
v

�
� H C 2

c
� F � ı.t � t0/ � ı.x � x0/ D

ı.t � t0/ � ı.x � x0/ : (3.50)

This equation can now be used to determine the unknown function F.v/.

F.v/ D C1 � ln.v/ C C2 (3.51)

is the general solution of the homogeneous equation

Fvv C Fv
v

D 0 : (3.52)

This equation is identical with the equation in the square brackets in (3.50). The
constant C1 is set to zero since we are interested in a solution that do not diverge if
v D 0. From the remaining part of (3.50) we find

C2 D c

2
: (3.53)

We thus get finally for the free-space Green’s function of the 1-dim. wave equation

G.x; tI x0; t0/ D c

2
� H.u/ ; (3.54)



3.2 The Elastic String 107

with u given by (3.34). The Reciprocity condition

G.x; tI x0; t0/ D G.x0;�t0I x;�t/ ; (3.55)

that holds obviously for this Green’s function, is a combination of (2.23) and (3.4).
There is an interesting relation that can be derived from the Green’s func-

tion (3.54). For this purpose we write (3.54) once again but by introducing the
always positive spatial distance

xd D jx � x0j : (3.56)

Since (3.54) reads explicitly

G.x; tI x0; t0/ D c

2
� H

�
.t � t0/ � 1

c
� xd

�
(3.57)

it is straightforward to show that relation

1

c

@G

@t
C @G

@xd
D 0 (3.58)

holds for the Green’s function of the 1.-dim. wave equation. What makes this
relation so interesting? To answer this question let us forget for a moment that we
are dealing with the Green’s function of the wave equation, and let us assume that
we have a Green’s function given by the general expression

G.x; tI x0; t0/ D c

2
� e � i!.t�t0/ � NG.xd/ : (3.59)

This is exactly the ansatz we will use later on in this chapter to discuss the Helmholtz
equation. Then, if applying relation (3.58) to this Green’s function, we get

@ NG.xd/

@xd
� i!

c
� NG.xd/ D 0 : (3.60)

But this can directly be compared to Sommerfeld’s radiation condition

lim
jxj!1

�
@f

@jxj � i k f

�
D 0 (3.61)

required for the scattering solution of the 1.-dim. Helmholtz equation in open
spaces, as we will see later on. I found it of some interest that Sommerfeld’s
radiation condition can be considered as a consequence of the Green’s function of
the wave equation and its restriction to time-like regions. This condition is usually
derived for scattering problems by energy considerations at infinity (see Sommerfeld
(1949), Sect. 28 therein), i.e., that any sources within a finite spatial region can only
act as sources and not as sinks of energy at infinity.
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Beside its importance in Quantum Mechanics, in the theory of vibrating strings
the Klein-Gordon equation

1

c2
� �Gtt.x; tI x0; t0/ C a2 � G.x; tI x0; t0/

� � Gxx.x; tI x0; t0/ D
ı.x � x0/ � ı.t � t0/ (3.62)

allows one to couple the elastic string to an elastic support. This support produces
a restoring force that causes dispersion effects. It is now straightforward to derive
the Green’s function by use of the ansatz (3.35). From (3.36)–(3.49) it follows the
equation

1

c2
�
�

Fvv C Fv
v

C a2 � F

�
� H C 2

c
� F � ı.t � t0/ � ı.x � x0/ D

ı.t � t0/ � ı.x � x0/ (3.63)

to determine the function F.v/. Next we are looking again for the general solution
of the homogeneous equation

Fvv.v/ C Fv.v/

v
C a2 � F.v/ D 0 : (3.64)

within the square brackets of (3.63). Applying the substitution

z D a � v (3.65)

gives the ordinary differential equation

Fzz.z/ C Fz.z/

z
C F.z/ D 0 : (3.66)

This is nothing but Bessel’s differential equation of zeroth order. Since we are again
interested in a solution that do not diverge if z D 0, and from the remaining part
of (3.63) we find

F.z/ D F.a v/ D c

2
� J0.a v/ (3.67)

(J0.z/ is Bessel’s function of zeroth order for which we have J0.0/ D 1 whereas the
other independent solution of (3.66) becomes divergent if z D 0). The free-space
Green’s function of the 1-dim. Klein-Gordon equation reads therefore

G.x; tI x0; t0/ D c

2
� J0.a v/ � H.u/ : (3.68)
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Equation

1

c2
� �Gtt.x; tI x0; t0/ C 2 � � Gt.x; tI x0; t0/

� � Gxx.x; tI x0; t0/ D
ı.x � x0/ � ı.t � t0/ (3.69)

represents the 1-dim. equation of telegraphy that can be used to describe wave
motions of an elastic string in the presence of a viscous damping. Using the
decomposition

G.x; tI x0; t0/ D e �� �.t�t0/ � OG.x; tI x0; t0/ (3.70)

(3.69) can be rewritten as follows:

1

c2
�
h OGtt.x; tI x0; t0/ � �2 � OG.x; tI x0; t0/

i
� OGxx.x; tI x0; t0/ D

e � �.t�t0/ � ı.x � x0/ � ı.t � t0/ : (3.71)

This equation looks similar to the Klein-Gordon equation. With ansatz (3.35), now
applied to OG.x; tI x0; t0/, we thus get the equation

1

c2
�
�

Fvv C Fv
v

� �2 � F

�
� H C 2

c
� F � ı.t � t0/ � ı.x � x0/ D

e � �.t�t0/ � ı.t � t0/ � ı.x � x0/ (3.72)

to determine F.v/. Substitution

z D i � � � v (3.73)

gives again Bessel’s differential equation of zeroth order,

Fzz.z/ C Fz.z/

z
C F.z/ D 0 ; (3.74)

but now for complex arguments. Looking for a solution that is regular in z D 0 we
thus get

F.z/ D c

2
� J0.z/ (3.75)

Alternatively we have

F.v/ D c

2
� I0.� v/ ; (3.76)
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where I0 denotes the modified Bessel function of zeroth order. The free-space
Green’s function of the 1-dim. equation of telegraphy is therefore given by

G.x; tI x0; t0/ D c

2
� e �� �.t�t0/ � I0.� v/ � H.u/ : (3.77)

The Green’s function (3.54) of the 1-dim. wave equation follows from the limiting
case � ! 0 and the fact that I0.0/ D 1.

Starting from the Green’s function (3.77) but with the substitution

� D 1

2
� c2 � a2 ; (3.78)

and if we consider the limiting case c ! 1 we can quickly derive the free-space
Green’s function of the 1-dim. diffusion equation

a2 � Gt.x; tI x0; t0/ � Gxx.x; tI x0; t0/ D � ı.x � x0/ � ı.t � t0/ : (3.79)

In so doing, we have only to take the approximations

I0.z/ � ez

p
2 � z

(3.80)

and

.1 � x/1=2 � 1 � x

2
I x << 1 (3.81)

into account. This provides

G.x; tI x0; t0/ D F.x; tI x0; t0/ � H.t � t0/ ; (3.82)

where

F.x; tI x0; t0/ D 1p
4 � a2 .t � t0/

� e � a2
4 � .x�x0 /2

.t�t0/ (3.83)

is a solution of the homogeneous diffusion equation

a2 � Ft.x; tI x0; t0/ � Fxx.x; tI x0; t0/ D 0 : (3.84)

Since c ! 1 was assumed in the course of deriving this function the principle
of contiguous action does not applies to the diffusion equation! An alternative
derivation of the Green’s function of the diffusion equation will be discussed in
the final chapter of this book.



3.2 The Elastic String 111

I hope that I could convince the reader by and by from the usefulness of the
“classical method” to derive the Green’s functions. We will come back to this
method later on in this chapter in conjunction with the Poisson- and Helmholtz
equations of higher dimensions. The method of the Fourier- or Laplace transform
that is usually applied in the literature is much more laborious. But, now, let us see
the Green’s function of the 1-dim. wave equation in action by looking at a few wave
phenomena of the elastic string.

3.2.3 Reciprocity and General Solution
of the One-Dimensional Wave Equation

By application of Green’s theorem for spatio-temporal problems and the require-
ment of homogeneous boundary conditions we first want to derive the Reciprocity
condition (3.55). The same procedure is applied to express the solution of the
inhomogeneous wave equation by the integral relation (3.1). To start with the first
task we consider the two equations

1

c2
� Gtt.x; tI x0; t0/ � Gxx.x; tI x0; t0/ D ı.x � x0/ � ı.t � t0/ (3.85)

and

1

c2
� Gtt.x;�tI x00;�t00/ � Gxx.x;�tI x00;�t00/ D ı.x � x00/ � ı.t � t00/ : (3.86)

Regarding the integration with respect to time (t D 0 is again chosen as the initial
time, and it is further assumed that t00 � t0 holds) we proceed in a way similar to
what was done with expression (2.26). Regarding the integration with respect to x
the time-like region �z D � 0

z \ � 00
z that is common to both Green’s functions (see

Fig. 3.4) must be considered. This provides

Z t00C

0

dt
Z
�z

dx

�
G.x;�tI x00;�t00/ � @

2G.x; tI x0; t0/
@x2

�

G.x; tI x0; t0/ � @
2G.x;�tI x00;�t00/

@x2
C 1

c2
� G.x; tI x0; t0/ �

@2G.x;�tI x00;�t00/
@t2

� 1

c2
� G.x;�tI x00;�t00/ � @

2G.x; tI x0; t0/
@t2

�
D

G.x00; t00I x0; t0/ � G.x0;�t0I x00;�t00/ : (3.87)
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Fig. 3.4 Time-like region
�z D � 0

z \ � 00
z (dotted

area) that is common to both
Green’s functions
G.x; tI x0; t0 D 0/ and
G.x; tI x00; t00 D 0/

ct

xx’ x”

The integration with respect to x and t on the left-hand side can be partially
accomplished and gives

Z t00C

0

dt

�
G.x;�tI x00;�t00/ � @G.x; tI x0; t0/

@x
� G.x; tI x0; t0/�

@G.x;�tI x00;�t00/
@x

�
x2@�z

C 1

c2
�
Z
�z

dx
�
G.x; tI x0; t0/ �

@G.x;�tI x00;�t00/
@t

� G.x;�tI x00;�t00/ � @G.x; tI x0; t0/
@t

�tDt00C

tD0
: (3.88)

As already discussed in Sect. 2.1.2, these two terms become identical zero due to
the requirement of Causality with respect to the temporal boundaries of the time-
like region and the assumed homogeneous boundary conditions with respect to its
spatial boundaries. The Reciprocity relation

G.x00; t00I x0; t0/ D G.x0;�t0I x00;�t00/ (3.89)

follows immediately. Restricting the derivation to homogeneous boundary con-
ditions emphasizes once again the insistence on the point of view that every
inhomogeneous boundary condition may be replaced by an appropriate source, as
demonstrated in conjunction with the 1-dim. Poisson equation.

If using the two equations

1

c2
�  t0 t0.x

0; t0/ �  x0x0.x0; t0/ D �.x0; t0/ (3.90)

and

1

c2
� Gt0 t0.x; tI x0; t0/ � Gx0x0.x; tI x0; t0/ D ı.x � x0/ � ı.t � t0/ ; (3.91)
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and if calculating once again the integral expression

Z tC

0

dt0
Z
�0

z

dx0
�

G.x; tI x0; t0/ � @
2 .x0; t0/
@x02 �  .x0; t0/ � @

2G.x; tI x0; t0/
@x02

C 1

c2
�  .x0; t0/

@2G.x; tI x0; t0/
@t02

� 1

c2
� G.x; tI x0; t0/ � @

2 .x0; t0/
@t02

�
D

 .x; t/ �
Z tC

0

dt0
Z
�0

z

dx0 G.x; tI x0; t0/ � �.x0; t0/ (3.92)

we get

 .x; t/ D
Z tC

0

dt0
Z
�0

z

dx0 G.x; tI x0; t0/ � �.x0; t0/ C
Z tC

0

dt0
�

G.x; tI x0; t0/ � @ .x
0; t0/

@x0

�
x02@�0

z

�

Z tC

0

dt0
�
 .x0; t0/ � @G.x; tI x0; t0/

@x0

�
x02@�0

z

C

1

c2
�
Z
�0

z

dx0 G.x; tI x0; 0/ �
�
@ .x0; t0/
@t0

�
t0D0

�

1

c2
�
Z
�0

z

dx0  .x0; 0/ �
�
@G.x; tI x0; t0/

@t0

�
t0D0

(3.93)

for the general solution of the inhomogeneous wave equation. The last two terms
are the result of performing the integration with respect to time.  .x0; 0/ and
Œ@ .x0; t0/=@t0�t0D0 represent the initial conditions of the field at t D 0. That is, these
two expressions are the equivalent to the initial position and the initial velocity of the
point mass. The corresponding two terms at the upper temporal boundary condition
t0 D tC are again zero because of the requirement of Causality. It should be noted
that even the last term of (3.93) bears already a strong resemblance to the propagator
concept in Quantum Mechanics. That is, a given field distribution  .x0; 0/ at the
initial time t0 D 0 causes a field distribution

 .x; t/ D
Z
�0

z

P.x; tI x0; t0/ �  .x0; 0/ dx0 (3.94)

at a later time t > t0, where

P.x; tI x0; t0/ D 1

c2
�
�
@G.x; tI x0; t0/

@t0

�
t0D0

(3.95)
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represents the “propagator”. Expression (3.94) makes also clear that the propagator
cannot be represented by any conventional function. It is rather a distribution since
P.x; tI x0; t0/ must become Dirac’s delta function ı.x � x0/ if t ! 0. However and as
already noted: Each of the last 4 terms of (3.93) may be replaced by corresponding
sources. But before this will be demonstrated by three examples it should be also
emphasized that the Klein-Gordon equation as well as the equation of telegraphy can
be iteratively solved by use of the Lippmann-Schwinger equation if the parameters
a and � result only in small disturbations from the wave equation. Regarding the
1-dim. Klein-Gordon equation and if assuming in general homogeneous boundary
conditions with respect to space and time the Lippmann-Schwinger equation reads

G .KG/.x00; t00I x0; t0/ D G0.x
00; t00I x0; t0/ �

a2

c2

Z t00C

t0
dt
Z

dx G0.x; tI x0; t0/ � G .KG/.x00; t00I x; t/ : (3.96)

For the equation of telegraphy we have on the other hand

G .TG/.x00; t00I x0; t0/ D G0.x
00; t00I x0; t0/ C

2 �

c2

Z t00C

t0
dt
Z

dx G0.x; tI x0; t0/ � @G .TG/.x00; t00I x; t/

@t
: (3.97)

G0.x00; t00I x0; t0/ represents in both cases the Green’s function of the 1-dim. wave
equation. How we can take a spatial disturbance from a spherical scatterer geometry
by use of a Lippmann-Schwinger equation into account is discussed in the next
chapter.

3.2.4 Examples of Simple Sources

The first and most simple source is given by

�.x0; t0/ D 2

c
� ı.t0/ � ı.x0/ : (3.98)

From the first term on the right-hand side of (3.93),

 .x; t/ D
Z tC

0

Z 1

�1
G.x; tI x0; t0/ � �.x0; t0/ dx0 dt0 ; (3.99)

and by use of the Green’s function (3.54) we get the solution

 .x; t/ D H.t � jxj=c/ : (3.100)
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Starting in x D 0, this is simply the step function  .x; t/ D 1 that becomes broader
in both the positive and negative x-direction for an increasing observation time t.

As a second example, let us consider the source

�.x0; t0/ D  .a; t0/ � ıx0.x0 � a/ �  .�a; t0/ � ıx0.x0 C a/ : (3.101)

The first derivative of the Green’s function (3.54) with respect to x0 provides

Gx0.x; tI x0; t0/ D 1

2
� ı.t � t0 � jx � x0j=c/ � �H.x � x0/ � H.x0 � x/

�
: (3.102)

From (3.99) and if taking the definition of the derivative of Dirac’s delta function
into account (see (2.44)!) we get therefore the final solution

 .x; t/ D � 1

2
�  .a; t0 D t � jx � aj=c/ � ŒH.x � a/ � H.a � x/� C

1

2
�  .�a; t0 D t � jx C aj=c/ � ŒH.x C a/ � H.�a � x/� : (3.103)

Let us now assume that  .a; t � jx � aj=c/ D  .�a; t � jx C aj=c/ D 1 holds at
the spatial boundaries x0 D ˙a, and at any time t0 earlier than the observation time
t. This provides the step function  .x; 0/ D 1 in the spatial region x 2 Œ�a; a� and
at observation time t D 0, for example, as shown in the upper part of Fig. 3.5.
Examples of boundary values along x0 D ˙a at three earlier times t0 which

Fig. 3.5 Huygens’ principle
and the solution (3.103) of
the 1-dim. wave equation.
The marks along x0 D ˙a are
the values of
Eqs. (3.104)–(3.106) at some
earlier times t0 < 0 which
contribute to the step function
at observation time t D 0. All
other values on the two
boundaries x0 D ˙a and at
times t0 < �2jaj (i.e., the
values outside the time-like
region) cancel each other

ψ(x, t = 0)

x

−a a

t

−3|a|
−5|a|/2
−2|a|
−3|a|/2
−|a|
−|a|/2
0

x’

t′ =

−a a

◦ × �

◦
×
�

◦
×
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contribute to the step function at t D 0 are shown in the lower part. That is, we
have

 .0; 0/ D 1

2
� � .a; t0 D �jaj/ C  .�a; t0 D �jaj/� D 1 (3.104)

 .a=2; 0/ D 1

2
� � .a; t0 D �jaj=2/ C  .�a; t0 D �3jaj=2/� D 1 (3.105)

 .a; 0/ D 1

2
� � .a; t0 D 0/ C  .�a; t0 D �2jaj/� D 1 : (3.106)

Please, note that c D 1 was used for simplicity! All the constant values along x0 D
˙a but for times t0 < �2jaj—these are points outside the time-like region!—cancel
each other and do not contribute to the step function at t D 0. This example can be
considered as an expression of Huygens’ principle for the 1-dim. wave equation. But
it reveals moreover that solution (3.103) produced by the source (3.101) can also be
obtained from the third term on the right-hand side of (3.93) if the inhomogeneous
Dirichlet conditions  .a; t � jx � aj=c/ D  .�a; t � jx C aj=c/ D 1 are required.
On the other hand, the second term on the right-hand side will become zero for the
homogeneous von Neumann conditions

�
 x0.x0; t0/

�
x0D˙a

D 0 : (3.107)

The last example is concerned with the well-known d’Alembert solution of the
elastic string. To this end, let us consider the source

�.x0; t0/ D 2

c2
� ˚� t0.x

0; t0/
�

t0D0 � ı.t0/ C  0.x
0/ � ıt0.t

0/
�

(3.108)

which is appropriate to replace the last two terms on the right-hand side of (3.93).
 0.x0/ and Œ t0.x0; t0/�t0D0 are the initial conditions. The source (3.108) can therefore
be compared to the initial value problems considered in Sect. 2.1.5. Using the
Green’s function (3.54) and the source (3.108) in (3.99) provides

 .x; t/ D 1

c
�
Z 1

�1
˚�
 t0.x

0; t0/
�

t0D0 � H.t � 1=c � jx � x0j/C

 0.x
0/ � ı.t � 1=c � jx � x0j/� dx0 : (3.109)

Taking the properties

ı.˛ x/ D ı.x/

j˛j (3.110)

ıŒ f .x/� D
X

n

1

j fx.xn/j � ı.x � xn/ (3.111)
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of Dirac’s delta function into account, where xn represent the zeroes of the function
f .x/ and fx denotes the first derivative of this function with respect to x, gives the
d’Alembert solution

 .x; t/ D 1

c
�
Z xCct

x�ct

�
 t0.x

0; t0/
�

t0D0 dx0 C Œ 0.x C ct/ C  0.x � ct/� : (3.112)

We see that an initial displacement of 2 �  0.x D x0/ at t D 0 results from the
superposition of the two functions 0.x�ct/ and 0.xCct/ which move in opposite
directions along the elastic string for an increasing observation time t > 0 but
without changing the form (i.e., without dispersion).

3.2.5 Reflection of d’Alembert’s Solution From a Fixed
Boundary

The reflection of an initial displacement from a fixed boundary is studied in what
follows. By introducing a mirror source this example offers a further possibility
to discuss the more general understanding of Huygens’ principle formulated in the
Prologue. The fixed boundary is assumed to be located in x D 0. It is characterized
by the homogeneous Dirichlet condition

G.x D 0; tI x0; t0/ D 0 (3.113)

that must additionally be fulfilled by the Green’s function (3.54) of the 1-dim. wave
equation. The initial displacement  0.x0/ is assumed to be restricted to a finite
region on the positive x-axis. The positive x-axis is therefore the spatial region of our
interest. Furthermore, t0 D 0 is used as the initial time. The corresponding source is
given by

�.x0; t0/ D 2

c2
�  0.x0/ � ıt0.t

0/ : (3.114)

The following ansatz is chosen for the Green’s function of this problem:

GC.x; tI x0; t0/ D G0.x; tI x0; t0/ C Gr.x; tI x0; t0/ ; (3.115)

where G0 represents the known free-space Green’s function (3.54). Gr, on the other
hand, represents the so far unknown reflected part. This part is once again assumed
to represent an appropriate solution of the 1-dim. but homogeneous wave equation.
The term  0.x C ct/, that results from G0 and the source (3.114), describes the
part of the d’Alembert solution that moves away from x0 but toward x D 0 for an
increasing observation time t. This is the only term that can actually approach the
fixed boundary at x D 0. Contrary, the term  0.x � ct/ moves into the opposite
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direction starting from x D x0. This term is therefore unable to approach the fixed
boundary. The Green’s function (3.54) can be split accordingly into two parts. The
one part, G<

0 .x; tI x0; t0/, is given by

G<
0 .x; tI x0; t0/ D c

2
� H

�
.t � t0/ � .x0 � x/

c

�
; (3.116)

or, because of the restriction to t0 D 0,

G<
0 .x; tI x0/ D c

2
� H

�
t � .x0 � x/

c

�
: (3.117)

It is a solution of the homogeneous, 1-dim. wave equation, as the reader may verify
by himself. Let us assume that the argument of the Heaviside function in Eq. (3.117)
is given by the positive constant �,

t � .x0 � x/

c
D � : (3.118)

Then we have

x D c � � C x0 � ct ; (3.119)

and

x2 < x1 if t2 > t1 (3.120)

holds. That is, it is the part of the Green’s function that corresponds with  0.x Cct/.
Indeed, if using G<

0 .x; tI x0; t0/ and source (3.114) in the integral relation (3.99), and
if taking the property (3.110) into account it is not difficult to see that we end up
with  .x; t/ D  0.x C ct/. The other part is given by

G>
0 .x; tI x0; t0/ D c

2
� H

�
.t � t0/ � .x � x0/

c

�
: (3.121)

Now, if the argument of the Heaviside function with t0 D 0 is again replaced by �,

t � .x � x0/
c

D � ; (3.122)

we have

x D � c � � C x0 C ct (3.123)

so that

x2 > x1 if t2 > t1 (3.124)
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holds. This is the part that corresponds with  0.x � ct/. That is, now we end up
with  .x; t/ D  0.x � ct/ if using G>

0 .x; tI x0; t0/ and source (3.114) in the integral
relation (3.99). This part is also a solution of the homogeneous, 1-dim. wave
equation. Both these Green’s functions are not appropriate to represent the reflected
part Gr since G<

0 expresses the unperturbed problem of the initial source that moves
in the opposite direction of the reflected part caused by the fixed boundary, and
since G>

0 will never come in touch with this boundary. However, if replacing the
initial position x0 of an elementary displacement on the positive x-axis by �x0 on the
negative x-axis we have the two other solution

bG<

0 .x; tI x0; t0/ D c

2
� H

�
.t � t0/ C .x0 C x/

c

�
(3.125)

and

bG>

0 .x; tI x0; t0/ D c

2
� H

�
.t � t0/ � .x C x0/

c

�
(3.126)

of the homogeneous, 1-dim. wave equation. And it is only bG>

0 .x; tI x0; t0/ that is
appropriate to represent the reflected part. This is due to the fact that it provides a
solution that travels away from the fixed boundary along the positive x-axis.

Gr.x; tI x0; t0/ D Cr �bG>

0 .x; tI x0; t0/ (3.127)

with the so far unknown constant Cr is therefore the expression used for the
reflected part in ansatz (3.115). This constant is determined by application of
condition (3.113). Since only G<

0 is the relevant part of G0 at the boundary in x D 0,
and since

G<
0 .x D 0; tI x0; t0/ D bG>

0 .x D 0; tI x0; t0/ (3.128)

holds we have

Cr D � 1 : (3.129)

GC.x; tI x0; t0/ D G0.x; tI x0; t0/ � c

2
� H

�
t � t0 � .x C x0/

c

�
(3.130)

is therefore the Green’s function of the problem under consideration.
Figure 3.6 shows the situation of a rectangular pulse as the initial displacement

on the positive x-axis. The corresponding source is given by (3.114) with

 0.x
0/ D H.x0 � a/ � H.b � x0/ (3.131)
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x

y

ba

ψ(x, t = 0)

ψr(x, t)

Fig. 3.6 Reflection of a rectangular pulse on a fixed boundary at x D 0

Half of the initial rectangular pulse  .x; t D 0/ D 2 0.x0/ generated by this source
moves toward the fixed boundary according to

 .x; t/ D H.x C ct � a/ � H.b � x � ct/ (3.132)

for an increasing observation time t, as already discussed. The reflected part results
from the integral relation

 r.x; t/ D
Z tC

0

Z 1

�1
Gr.x; tI x0; t0/ � �.x0; t0/ dx0 dt0 (3.133)

with Gr given by (3.127)/(3.129). Thus we get from (3.114) and (3.131)

 r.x; t/ D � 0.ct � x/ D � H.ct � x � a/ � H.b C x � ct/ : (3.134)

Starting from t D a=c in x D 0 this reflected solution moves along the positive x-
axis but with the reversed sign of the initial rectangular pulse, as shown in Fig. 3.7.
The complete solution is obtained from the superposition of this reflected part with
the initial solution (3.132) produced by G<

0 . This superposition reads

 C.x; t/ D  .x; t/ C  r.x; t/ D
H.x C ct � a/ � H.b � x � ct/ � H.ct � x � a/ � H.b C x � ct/ (3.135)

and guarantees the fulfillment of the fixed boundary condition in x D 0.
Exercise: Development of a computer program to demonstrate the temporal

behaviour of a rectangular pulse and its reflection from a fixed boundary
according to Eq. (3.135). Generalize the above equations and the computer
program to the situation of a second but fixed boundary so that the initial pulse
generated in between these two boundaries at initial time t D 0 will be reflected
back and forth. Note, that both the initial solutions  0.x � ct/ and  0.x C ct/
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Fig. 3.7 Sequence of the reflected part (3.134) on the positive x-axis (if b D 2a is used) for 4
different observation times

have to be considered in this case (see also Sect. 3.4.4)! Choose the temporal
resolution appropriately to generate a movie of this motion.

In the method described above the Green’s function was splitted into the two
parts G0 and Gr according to ansatz (3.115). After determination of its reflected part
the single source (3.114) was applied in our pivotal integral relation. But the same
solution on the positive x-axis can alternatively be obtained with only the free-space
Green’s function G0 of the 1-dim. wave equation by introducing a second source—a
so-called “mirror source”—beside the original source (3.114). This mirror source,
if applied to G0, generates the correct reflected part of the solution if it is given by

�m.x
0; t0/ D 2

c2
� 
0.x0/ � ıt0.t

0/ ; (3.136)

where


0.x
0/ D � 0.�x0/ (3.137)

(see Fig. 3.8 for the rectangular pulse). Now, the fixed boundary condition does
not applies to the Green’s function G0 but to the superposition of the solutions
generated by each of these two sources. This is a further example of the fact that
an interaction—the interaction with a fixed boundary in our case—can be replaced
by a corresponding source according to the more general understanding of Huygens’
principle discussed in the Prologue.
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x
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ψ0(x
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φ0(x
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prim. source ρ

mirror source ρm

x = 0

Fig. 3.8 Position of the mirror source related to the problem of the reflection of a rectangular pulse
on a fixed boundary at x D 0

Another aspect of interest is the rate of transfer of energy across a certain
observation point x. This rate is given by

P.x; t/ WD � T � @ C
@x

� @ C
@t

(3.138)

(see Graff (1991), Chap. 1 or Morse and Feshbach (1953), Vol 1, Sect. 2.1, for
example). Applied to the solution (3.135) the resulting expression for the initial
part  .x; t/ D  0.ct C x/ gives

P.x; t/ D � c T �
�
@ 0

@u

�2
(3.139)

while the corresponding expression for the reflected part  r.x; t/ D � 0.ct � x/
gives

Pr.x; t/ D c T �
�
@ 0

@u

�2
: (3.140)

Please, note that u represents the respective argument of  0 in these two expres-
sions! Thus we have finally

PC.x; t/ D P.x; t/ C Pr.x; t/ D 0 (3.141)

as an expression of energy conservation.
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3.2.6 Reflection and Transmission of d’Alembert’s Solution
at a Discontinuity

The last example is concerned with the behaviour of d’Alembert’s solution in
the presence of a discontinuity. For this purpose, let us consider two strings with
different material parameters linked together at x D 0. On the negative x-axis we
have the string with the characteristic phase velocity c�. The other string with the
characteristic phase velocity cC agrees with the positive x-axis. The source (3.114)
of an initial displacement in x0 on the positive x-axis at t0 D 0 is moreover used.
Thus we have to replace c by cC in (3.114) as well as in the corresponding solution
 C.x; t/ on the positive x-axis that is given by (3.135). Beside the reflected part we
may now expect the existence of an additional transmitted part  t.x; t/ that moves
along the negative x-axis starting from x D 0 at time t D x0=cC. I hope that the
reader will not become confused with the subindex “t” that is used to denote the
transmitted part of the solution as well as the time derivative. The meaning should
become clear from the context. Ansatz (3.115) with G0 and Gr according to (3.54)
and (3.127) (with c again replaced by cC) can still be used for the Green’s function
on the positive x-axis. On the other hand,

G�.x; tI x0; t0/ D Ct � c�
2

� H

�
t � t0 � x0

cC
C x

c�

�
(3.142)

is used as an appropriate ansatz for the Green’s function on the negative x-axis that
can be related to the transmitted solution. This Green’s function is now a solution of
the homogeneous wave equation

1

c2�
� ŒG��tt.x; tI x0; t0/ � ŒG��xx.x; tI x0; t0/ D 0 : (3.143)

The term x0=cC in (3.142) considers the fact that the transmitted part cannot be
observed before t D x0=cC. This is the time the initial displacement in x0 at time
t0 D 0 needs to move to x D 0. To determine the constants Cr and Ct of the reflected
and transmitted part we require the fulfillment of the two additional conditions

GC.x D 0; tI x0; t0/ D G�.x D 0; tI x0; t0/ (3.144)

and
�
@GC.x; tI x0; t0/

@x

�
xD0

D
�
@G�.x; tI x0; t0/

@x

�
xD0

(3.145)

at x D 0. From these conditions we obtain

1 � Cr D Ct (3.146)

1 C Cr D � � Ct ; (3.147)
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where

� D c�
cC

(3.148)

denotes the ratio of the phase velocities. This gives

Cr D � � 1

� C 1
(3.149)

Ct D 2

� C 1
: (3.150)

The reflected part of the solution on the positive x-axis reads

 r.x; t/ D Cr �  0.cC � t � x/ : (3.151)

The transmitted part can be calculated from

 t.x; t/ D
Z tC

0

Z 1

�1
G�.x; tI x0; t0/ � �.x0; t0/ dx0 dt0 : (3.152)

This gives

 t.x; t/ D QCt �  0
�

cC � t C x

�



; (3.153)

where

QCt D 2 �

� C 1
: (3.154)

Applied to the rectangular pulse given in (3.131) this reads

 t.x; t/ D QCt � H
�

cC � t C x

�
� a



� H
�
2a � cC � t � x

�



: (3.155)

Cr and QCt are the reflection and transmission coefficients of the solutions. The
following relation holds for these coefficients:

1 D C 2
r C 1

�
� QC 2

t : (3.156)

With the definition

S WD Sr C i Si D Cr C i
p
� � Ct (3.157)
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this can be rewritten into

S � � S D 1 ; (3.158)

It is again an expression of energy conservation. Alternatively, by taking rela-
tion (3.156) into account it is straightforward to show that instead of (3.141)

PC.x; t/ D Pt.x; t/ (3.159)

holds for the energy flow defined in (3.138). However, these relations do not hold if
the strings are embedded in a viscous environment. This would require the usage of
the Green’s function (3.77) in the above considered derivations. But the boundary
conditions (3.113) and (3.144)/(3.145) are still be applicable. From (3.153) we
see moreover that, in dependence on � the transmitted solution  t is stretched or
compressed compared to the primary solution 0. The former holds for � > 1 while
the latter applies to � < 1. This can nicely be seen from (3.155). And also the two
limiting cases of only a reflection if c� D 0, and of no interaction at all if c� D cC
are also correctly covered by the coefficients Cr and QCt.

3.3 Poisson Equations of Higher Dimensions

The objective of this section is to derive the free-space Green’s functions of the
Poisson equation

r2G.r; r0/ D ı.r � r0/ (3.160)

in two and three dimensions. The inhomogeneity on the right-hand side is in
Cartesian coordinates correspondingly given by

ı.r � r0/ D ı.x � x0/ � ı.y � y 0/ (3.161)

and

ı.r � r0/ D ı.x � x0/ � ı.y � y 0/ � ı.z � z0/ : (3.162)

It is of special interest to find out if our “classical method” can successfully be
applied also in the cases of polar and spherical coordinates. We will discover
moreover an interesting relation between the Green’s functions of the Poisson
equation in one- and three dimensions. But, first, let us consider Dirac’s delta
function and the unit source in polar- and spherical coordinates.
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3.3.1 Dirac’s Delta Function and Unit Sources
in Polar- and Spherical Coordinates

The integral

Z
�

f .r/ � ı.r � r0/ d� WD f .r0/ (3.163)

is the generalization of the definition of the 1-dim. Dirac’s delta function to higher
dimensions. r0 and r are the corresponding vectors to two points inside the higher-
dimensional space � . This integral should provide 1 if f .r/ D 1. Regarding polar
coordinates, we have

x D R � cos


y D R � sin 
 ; (3.164)

where R 2 Œ0;1Œ, and 
 2 Œ0; 2��. For spherical coordinates we have on the other
hand

x D R � sin � � cos


y D R � sin � � sin 


z D R � cos � ; (3.165)

where R 2 Œ0;1Œ, 
 2 Œ0; 2��, and � 2 Œ0; ��. Suppose that the origin of the
coordinate system is identical with the source point. Then, Dirac’s delta functions
as well as the free-space Green’s functions are only functions of the radius R
and independent of the angular coordinates. This simplifies the calculation of the
Green’s function, as we will see shortly. The origin of the coordinate system can
be shifted afterwards to an arbitrary position. To calculate the integral (3.163) with
f .r/ D 1 in this special situation we have to take the integral

Z 2�

0

R d
 D 2 � R (3.166)

in the case of polar coordinates, and the integral Integral

Z 2�

0

Z �

0

R2 � sin � d� d
 D 4 � R2 (3.167)
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in the case of spherical coordinates into account. The corresponding Dirac’s delta
functions read therefore (see Duffy (2001), Sect. 1.2 therein, for example)

ıp.R/ D 1

2 � R
� ı.R/ (3.168)

ıs.R/ D 1

4 � R2
� ı.R/ : (3.169)

If the radially dependent delta function ı.R/ is normalized to unity according to
Z 1

0

ı.R/ dR D 1 ; (3.170)

we thus have
Z 1

0

Z 2�

0

R � ıp.R/ dR d
 D 1 (3.171)

Z 1

0

Z 2�

0

Z �

0

R2 � sin � � ıs.R/ dR d
 d� D 1 : (3.172)

Next we want to clarify the understanding of a unit source located in the origin
of the coordinate system. The yield of such a source is defined as the outward flow
of the field  .R/ (the gradient @ .R/=@R) across a closed surface surrounding
the source point. The field itself as well as the corresponding Green’s function is
characterized by a discontinuity (1-dim. case) or a singularity (higher dim. case)
if the observation point approaches the source point. For our purpose we have to
surround the source point by a circle of an arbitrarily small radius R� in case of
polar coordinates or by the surface of a sphere of an arbitrarily small radius R� in
case of spherical coordinates. Normalization of this flow to unity if integrated over
the circle or the spherical surface provides the following conditions for the unit
source (see Sommerfeld (1949), Chap. II, for example):

• 1-dim. case:

�
dG.x; x0/

dx

�xDx0C�

xDx0��
D 1 (3.173)

• polar coordinates:

�
R � dG.2/.R/

dR

�
R�

D 1

2 �
(3.174)

• spherical coordinates:

�
R2 � dG.3/.R/

dR

�
R�

D 1

4 �
: (3.175)
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These three conditions can be considered to be the analog to condition (2.52). They
will again be used in our “classical method” to determine the constants of the general
solutions of the respective homogeneous equations, as we will see now.

3.3.2 Green’s Function of the Two-Dimensional Poisson
Equation

Assuming that the source point agrees with the origin of the polar coordinate system
the Poisson equation for the Green’s function G.2/.R/ reads

G.2/
RR.R/ C 1

R
� G.2/

R .R/ D 2 ıp.R/ D 1

� R
� ı.R/ : (3.176)

Please, note that we have used once again the symbolic notation for the first and
second derivative with respect to R. From our experience of the second chapter it
seems promising to use

G.2/.R/ D F.R/ � H.R/ (3.177)

as an appropriate ansatz. It seems as if the Heaviside function H.R/ can be omitted
since R � 0. But according to our classical method we have to calculate the first and
second derivative of the Green’s function. In so doing H.R/ produces the required
Dirac’s delta function. However, H.R/ can be omitted in the final result, i.e., once
we have determined F.R/. Using (3.177) in (3.176) we find

�
FRR.R/ C FR.R/

R

�
� H.R/ C 2 � FR.R/ � ı.R/ D 1

� R
� ı.R/ : (3.178)

The unknown function F.R/ can be determined by looking for the general solution
of the homogeneous equation in the square brackets, i.e., of the ordinary differential
equation

FRR.R/ C FR.R/

R
D 0 : (3.179)

F.R/ D C1 � ln.R/ C C2 (3.180)

is its general solution. Constant C1 can now be determined by applying condi-
tion (3.174). This gives

C1 D 1

2 �
: (3.181)
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If C2 is again set to zero, as already done in the 1-dim. case in Sect. 3.2.1, the free-
space Green’s function of the 2-dim. Poisson equation is given by

G.2/.R/ D 1

2 �
� ln.R/ � H.R/ : (3.182)

It is not difficult to show that this Green’s function is indeed a solution of (3.176).
But it becomes also clear that only the inhomogeneity 2 ıp.R/ produces a solution
that is in correspondence with condition (3.174) of the unit source. On the other
hand, using the inhomogeneity ıp.R/ would result in

G.2/.R/ D 1

4 �
� ln.R/ � H.R/ (3.183)

which is not in correspondence with (3.174). We have to replace R by jr � r0j
in (3.182) if the source point does not agrees with the origin of the coordinate
system. Since

jr � r0j D �
.x � x0/2 C .y � y 0/2

�1=2
; (3.184)

and if using (3.164) we thus get

G.2/.r; r0/ D 1

2 �
� ln

n�
R2 C R 0 2 � 2R R 0 � cos.
 � 
0/

�1=2o
(3.185)

for the free-space Green’s function of the 2-dim. Poisson equation. It contains the
solution (3.182) as a special case if R 0 D 0.

3.3.3 Green’s Function of the Three-Dimensional Poisson
Equation

G.3/
RR.R/ C 2

R
� G.3/

R .R/ D ıs.R/ (3.186)

is the equation of the Green’s function of the 3-dim. Poisson equation in spherical
coordinates. The source point is again assumed to be located in the origin of the
coordinate system. From ansatz

G.3/.R/ D F.R/ � H.R/ (3.187)
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it follows the equation

�
FRR.R/ C 2

R
� FR.R/

�
� H.R/ C

�
2 � FR.R/ C F.R/

R

�
� ı.R/ D ı.R/

4 � R2
(3.188)

to determine F.R/. The general solution of the corresponding homogeneous differ-
ential equation

FRR.R/ C 2

R
� FR.R/ D 0 ; (3.189)

that results from the expression in the square brackets of the first term on the left-
hand side of (3.188), is given by

F.R/ D C1
R

C C2 : (3.190)

Constant C1 can now be determined from condition (3.175). This gives

C1 D � 1

4 �
: (3.191)

Constant C2 is again set to zero. Thus we get for the free-space Green’s function of
the 3-dim. Poisson equation in spherical coordinates the expression

G.3/.R/ D � 1

4 � R
� H.R/ : (3.192)

It is indeed a solution of (3.186) as a straightforward calculation demonstrates. If
the source point is located outside the origin of the coordinate system we have on
the other hand

G.3/.r; r0/ D � 1

4 � jr � r0j ; (3.193)

where

jr � r0j D �
.x � x0/2 C .y � y0/2 C .z � z0/2

�1=2
: (3.194)

Next, let us consider the modified 1-dim. Poisson equation

GRR.R/ D ı.R/ (3.195)

that is the radially dependent analog to (3.3). Its solution is given by

G.R/ D R � H.R/ (3.196)
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as the reader may verify by himself by insertion. It differs from (3.13) in the absence
of the factor 1=2 and is in accordance with the 1-dim. condition

�
dG.R/

dR

�
RD0C

D 1 (3.197)

of a unit source. The Green’s function (3.192) of the 3-dim. Poisson equation can
be related to this 1-dim. Green’s function by

G.3/.R/ D � 1

4 � R
� GR.R/ : (3.198)

We will see later on in this chapter that this relation also applies to other equations.
I want to point out also the typical logarithmic singularity in the 2-dim. case and the
1=R singularity in the 3-dim. case. For all the scalar fields considered in this book
these singularities are uncritical and in accordance with the conditions of the unit
source. The situation becomes much more complicate if vector fields be involved in
the problems under consideration, as we have in electromagnetic wave scattering,
for example. Then the singularities may become much stronger and require a special
treatment with essential consequences also for the numerical procedures. But since
vector fields are outside the interest of this book I just want to mention the two
references Van Bladel (1991) and Fikioris (2004) which consider strong singularities
of electromagnetic fields in detail. Especially the latter reference provides a very
good introduction (according to my very personal mind) to this topic.

3.4 Wave Equations of Higher Dimensions

We are now interested in the derivation of the Green’s functions of the 2-dim. wave
equation

1

c2
G.2/

tt .RI t; t0/ � G.2/
RR.RI t; t0/ � 1

R
� G.2/

R .R/ D ı.R/ � ı.t � t0/ (3.199)

in polar coordinates, and the 3-dim. wave equation

1

c2
G.3/

tt .RI t; t0/ � G.3/
RR.RI t; t0/ � 2

R
� G.3/

R .R/ D ı.R/ � ı.t � t0/ (3.200)

in spherical coordinates with the source point assumed again to be located in the
origin of the coordinate system. The solutions are well-known. Looking into the
relevant literature tells us that these are given by

G.2/.RI t; t0/ D H.u/

2�v
(3.201)
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and

G.3/.RI t; t0/ D ı.u/

4�R
; (3.202)

where

u D .t � t0/ � R

c
� H.R/ (3.203)

and

v D
�
.t � t0/2 � R2

c2

�1=2
(3.204)

in analogy to (3.33) and (3.34) (see Morse and Feshbach (1953), Duffy (2001), for
example). For the corresponding radially dependent, 1-dim. wave equation

1

c2
Gtt.RI t; t0/ � GRR.RI t; t0/ D ı.u/ � ı.R/ D ı.t � t0/ � ı.R/ (3.205)

we have on the other hand

G.RI t; t0/ D c � H.u/ (3.206)

which differs again from (3.54) by the absent factor of 1=2. The Heaviside function
H.R/ that appears in (3.203) can again be omitted in the final expression. But if
we want to prove the correctness of solution (3.206) by insertion into (3.205), for
example, we have to take it into account since it produces the required Dirac’s
delta functions in the corresponding derivatives uR and uRR, as already shown
in Sect. 3.2.2 in connection with ux and uxx. However, when I tried to derive
the above given Green’s functions of the 2- and 3-dim. wave equation by the
“classical method” I was unable to accomplish it, and I faced the following problem:
In all the situations considered so far (including the 1-dim. wave equation) we
succeeded in deriving the Green’s functions by a shirtsleeves handling of the
Heaviside- and Dirac’s delta function—shirtsleeves at least from the point of view
of a mathematician. On the other hand, this handling is well accepted among
physicists. It was therefore my goal to insist in this method and to find out the
point where it fails. Frankly speaking, I cannot offer a satisfactory answer to
this problem. I consider my restricted in-depth knowledge of the mathematical
background of the theory of distributions as the most likely cause of this invidious
situation. However, reading the physical literature I have got the impression that
I am not alone with this problem, and that it is often swept under the carpet or
even ignored. That is, if we try to prove the correctness of (3.201) and (3.202)
by insertion into (3.199) and (3.200), respectively, we fail to end up with the
correct inhomogeneities. But these inhomogeneities are important to derive the
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pivotal relation (1.1), as demonstrated already not only in the last but also in this
chapter. And, regarding (3.201), this is not even a solution of the corresponding
homogeneous equation. Before I will offer something like a Desperate Explanation
of Plausibility (DEP) to insist in the “classical method” by its combination with the
Fourier transform method with respect to time, let us see how these Green’s function
are usually derived in the physical literature.

3.4.1 Three-Dimensional Wave Equation

In Morse and Feshbach (1953) Chap. 7.3 therein, for example, it is first required
that the radially dependent part of the 3-dim. Green’s function of the wave equation
must behave like the Green’s function of the 3-dim. Poisson equation if R tends to
0. That is, condition

limR!0 G.3/.RI t; t0/ D ı.t � t0/
4�R

(3.207)

must hold. This condition, the fact that

C1 � F1Œ.t � t0/� R=c�

R
C C2 � FŒ.t � t0/C R=c�

R
(3.208)

represents the general solution of the 3-dim. but homogeneous wave equation for
any two functions F1 and F2 (d’Alembert’s solution is raising its head!), and the
restriction to the time-like region (i.e., C2 D 0) results finally in the solution (3.202).
In Duffy (2001) this Green’s function is obtained by applying the Laplace transform
to the time dependence and the Fourier transform to the Cartesian coordinates.

However, the third and most simple way to determine (3.202) consists in the
application of relation (3.198) to the 1-dim. Green’s function (3.206), as already
mentioned in the foregoing section. The same holds for the 3-dim. Klein-Gordon
equation if using the radially dependent, 1-dim. Green’s function

G.RI t; t0/ D c � J0.a v/ � H.u/ (3.209)

instead of (3.68) in relation (3.198). The free-space Green’s function of the 3-dim.
Klein-Gordon equation is then given by

G.3/.RI t; t0/ D ı.u/

4�R
� aJ1.a v/

4�cv
� H.u/ : (3.210)

Exercise: Apply the same procedure to determine the Green’s function of
the 3-dim. equation of telegraphy.
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3.4.2 Two-Dimensional Wave Equation

At first glance it seems possible to apply the procedure of Morse and Feshbach
(1953) also to the 2-dim. situation. But looking at the different singularities of the
Green’s functions (3.182) and (3.201) of the 2-dim. Poisson- and wave equations if
R tends to zero reveals that this is not feasible. Interestingly, when we try to apply the
“classical method” to the 2-dim. wave equation by choosing ansatz (3.35) but with u
and v given by (3.203) and (3.204) we end up with the general solution C �H.u/=v of
the corresponding homogeneous differential equation. This agrees already with the
general structure of (3.201). But the determination of the constant C by integration
of the remaining expression and the inhomogeneity on the right-hand side fails.

One method in the literature to determine this Green’s function is called the
“Hadamard method of descent” (see Morse and Feshbach (1953), for example).
In so doing, we have to integrate the Green’s function (3.202) of the 3-dim. wave
equation with respect to one coordinate—let us say the z-coordinate—according to

G.2/. ORI t; t0/ D
Z 1

�1
G.3/.RI t; t0/ dz ; (3.211)

where OR D p
x2 C y2 and R D

p OR2 C z2. Expressed in Cartesian coordinates, we
have to calculate the integral

G.2/. ORI t; t0/ D 1

4�
�
Z 1

�1
ıŒ.t � t0/ � 1=c �

p OR2 C z2�p OR2 C z2
dz : (3.212)

Integration can be performed by employing relation (3.111), where the zeroes z1;2
are given by

z1;2 D ˙
q

c2 .t � t0/2 � OR2 ; (3.213)

and with the restriction

OR < c � .t � t0/ (3.214)

that must hold for the time-like region. This gives the Green’s function (3.201). An
alternative method is discussed in Duffy (2001). This method applies the Laplace
transform to the time variable and the Fourier transform to the x-coordinate only.
The y-coordinate remains unchanged. The inversion is accomplished by the not even
simple Cagniard-de Hoop technique.

These are some of the methods one can find in the literature to calculate the free-
space Green’s functions of the 2- and 3-dim. wave equation. But, according to my
mind, the initially mentioned problem with reproducing the correct inhomogeneities
on the right-hand side of these equations remains still open.
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3.4.3 Fourier Transform Method in Infinite Regions

One possibility to act as if everything is okay with the inhomogeneities of the
solutions (3.201) and (3.202) without going into the details of the theory of
distributions consists in the application of the Fourier transform method to the time
variable only. In so doing, we have to discover the frequency dependent Green’s
functions of the resulting Helmholtz equations. This can again be accomplished
by our “classical method”. Integration over these frequency dependent Green’s
functions results finally in the Green’s functions of the wave equations. This final
step is the reason for calling it also the “superposition method”. This method is
described in Morse and Feshbach (1953) and applied to the transient motion of a
circular membrane and to the derivation of (3.202). That it can be applied with
benefit also to other equations is demonstrated in what follows and also in the
last chapter of this book when dealing with the 1-dim. diffusion- and Schrodinger
equation. In Wladimirow (1972) (unfortunately only in German) one can find a
mathematical justification of this method by operating with the direct product of
distributions. However, the Fourier transform method is applied in this book to the
space dependent part.

We start with the integral representations (the inverse of the Fourier transforma-
tions)

ı.t � t0/ D 1

2�

Z 1

�1
e �i!.t�t0/ d! (3.215)

of the time dependent Dirac’s delta function and

G.r; tI r0; t0/ D 1

2�

Z 1

�1
G.r; r0I!/ � e �i!.t�t0/ d! (3.216)

of the time dependent part of the Green’s function. In case of the 1-, 2-, and 3-dim.
wave equation the following space dependent Dirac’s delta functions are used:

ı.r � r0/ D ı.x � x0/ ; (3.217)

ı.r � r0/ D 2 � ıp.R/ ; (3.218)

and

ı.r � r0/ D ıs.R/ ; (3.219)

where ıp.R/ and ıs.R/ are given by (3.168) and (3.169). That the unit source is
located in the origin of the polar and spherical coordinate system is assumed in the
last two expressions. Applied to the wave equation

1

c2
� Gtt.r; tI r0; t0/ � r2G.r; tI r0; t0/ D ı.t � t0/ � ı.r � r0/ (3.220)
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provides the following Helmholtz equations:

• 1-dim. case:

Gxx.x; x
0I!/ C k2 G.x; x0I!/ D � ı.x � x0/ ; (3.221)

• 2-dim. case (polar coordinates):

r2
p G.2/.RI!/ C k2 G.2/.RI!/ D � 2 � ıp.R/ (3.222)

• 3-dim. case (spherical coordinates):

r2
s G.3/.RI!/ C k2 G.3/.RI!/ D � ıs.R/ : (3.223)

The wave number k therein is given by

k D !

c
; (3.224)

and the radially dependent parts r2
p and r2

s of the Laplace operator in polar- and
spherical coordinates agree with the left-hand sides of the 2- and 3-dim. Poisson
equations (3.176) and (3.186). Next we have to find the solutions of these equations.
As already mentioned, and as will be demonstrated in detail in the next section,
this can again be accomplished by our “classical method”. In this section we will
consider these Green’s functions to be given. That these functions are in fact the
correct solutions can be proven by insertion into the respective Helmholtz equation.
The Green’s functions read

G.x; x0I!/ D i

2k
� e ikjx�x0j ; (3.225)

G.2/.RI!/ D i

4
� H.1/

0 .kR/ � H.R/ ; (3.226)

and

G.3/.RI!/ D 1

4�R
� e ikR � H.R/ : (3.227)

H.1/
0 .kR/ in (3.226) denotes the Hankel function of first kind and zeroth order. The

Heaviside functions in (3.226) and (3.227) can again be omitted if used in (3.216).
But they have to be taken into account for the proof of correctness. And, as it
happened for the Poisson- and wave equation, relation (3.198) holds also for the
3-dim. Green’s function of the Helmholtz equation if the solution

G.RI!/ D i

k
� e ikR H.R/ (3.228)
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of the radially dependent, 1-dim. Helmholtz equation

GRR.RI!/ C k2 G.RI!/ D � ı.R/ (3.229)

is used instead of (3.225).
It is now straightforward to derive the Green’s function of the 3-dim. wave

equation by substituting (3.227) into (3.216). That is, we have to calculate

G.3/.RI t; t0/ D 1

8�2R

Z 1

�1
e ikR � e �i!.t�t0/ d! ; (3.230)

or, if using (3.224),

G.3/.RI t; t0/ D 1

8�2R

Z 1

�1
e �i!Œ.t�t0/�R=c� d! : (3.231)

Application of (3.215) results finally in (3.202).
Regarding the 2-dim. situation in polar coordinates we have to solve

G.2/.RI t; t0/ D i

8�

Z 1

�1
H.1/
0 .kR/ � e �i!.t�t0/ d! : (3.232)

The following integral representation is known for the Hankel function of first kind
and zeroth order (see Abramowitz and Stegun (1984), for example):

H.1/
0 .z/ D � 2 i

�

Z 1

1

e iz˛

p
˛2 � 1

d˛ D

� 2 i

�

Z 1

�1
e iz˛

p
˛2 � 1 � H.˛ � 1/ d˛ I z > 0 (3.233)

Substituting this expression into (3.232) and taking (3.215) into account provides

G.2/.RI t; t0/ D c

2�R

Z 1

�1
ı.

c.t�t0/
R � ˛/p
˛2 � 1

� H.˛ � 1/ d˛ : (3.234)

Since Hfc=RŒ.t � t0/ � R=c�g D HŒ.t � t0/� R=c� (3.201) follows immediately.
To derive the Green’s function of the 1-dim. wave equation we have to calculate

G.x; tI x0; t0/ D i

4�

Z 1

�1
e ikjx�x0j � e �i!.t�t0/

k
d! (3.235)

or

G.x; tI x0; t0/ D i c

4�

Z 1

�1
e �i!Œ.t�t0/� jx�x0 j

c �

!
d! (3.236)
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if applying (3.224). Substitution of ! by

! D � N! � i� I � > 0 (3.237)

results in

G.x; tI x0; t0/ D c

4�i
e � � Œ.t�t0/� jx�x0 j

c �

Z 1

�1
e i N!Œ.t�t0/� jx�x0 j

c �

N! C i�
d N! : (3.238)

On the other hand, integral representation

H.x/ D 1

2�i

Z 1

�1
e i N!x

N! C i�
d N! (3.239)

is known for the Heaviside function. Then (3.54) follows from (3.238) and from
� ! 0.

It seems that this method works quite well. But the following aspect should not
be swept under the carpet: In contrast to the inverse (2.56) of the Fourier transform
defined with expŒC i!.t � t0/� in Sect. 2.1.4, in representation (3.216) e�i!.t�t0/ was
used instead. The fact that we have to look for solutions in the time-like region is
the reason for this difference. This becomes impossible if expŒC i!.t � t0/� would
have been used. This can be seen from the derivation of the 1-dim. wave equation
considered above. Instead of (3.235) we would then get

G.x; tI x0; t0/ D i

4�

Z 1

�1
e ikjx�x0j � e i!.t�t0/

k
d! ; (3.240)

and, therefore, .t � t0/C jx�x0j
c as the argument of the Heaviside function. It seems as

if the requirement of Causality fixes the sign in the exponent of the Fourier transform
if applied to problems in time and space!

Next we want to clarify if this method can also be applied to problems in finite
regions. For this purpose, let us consider the example of a finite elastic string
with fixed ends. The Green’s function of the Helmholtz equation, or, better, its
approximation by a bilinear expansion in terms of the corresponding eigensolutions,
possesses poles at the eigenfrequencies. This was already demonstrated in Sect. 2.6.

3.4.4 Fourier Transform Method in Finite Regions

The eigenvalue problem of Helmholtz’ equation for the finite elastic string fixed at
x D 0 and x D L will be discussed in more detail in the next section. Here it will
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again considered to be given. The corresponding bilinear expansion of the Green’s
function reads

G.x; x0I!/ D c2 �
1X

nD1

'n.x/ � 'n.x0/
!2 � !2n

; (3.241)

where

'n.x/ D
r
2

L
� sin.knx/ (3.242)

and

kn D !n

c
D n�

L
(3.243)

are the normalized eigenfunctions and eigenvalues. From (3.216) we thus get

G.x; tI x0; t0/ D i c2
1X

nD1
'n.x/ � 'n.x

0/
Z 1

�1
d!

2�i
� e �i!.t�t0/

!2 � !2n
(3.244)

for the Green’s function of the 1-dim. wave equation. A similar integral was already
considered in Sect. 2.1.4 when deriving the Green’s function of the simple harmonic
oscillator by use of the Fourier transform method. Due to the negative sign of
the exponent in (3.244) this method must be modified accordingly to meet the
requirement of Causality. That is, now we have to close the path of integration
in the lower complex !-plane. Another possibility to solve this integral offers
the complex-valued Dirac’s delta function, as described in Sect. 2.5.2. Both these
methods provide finally “sinŒ!n.t � t0/�=!n” that can be compared to (2.66). The
Green’s function reads therefore

G.x; tI x0; t0/ D c2
1X

nD1

sinŒ!n.t � t0/�
!n

� H.t � t0/ � 'n.x/ � 'n.x
0/ ; (3.245)

where we have multiplied the time dependent Heaviside function H.t�t0/ to indicate
that t > t0 must hold. By use of this Green’s function we are now able to solve
temporal problems for the finite elastic string fixed at x D 0 and x D L. As an
example, let us again consider the d’Alembert problem of an initial displacement
 0.x0/ at time t0 D 0 given by the source (3.114). We thus get from (3.99)

 .x; t/ D
1X

nD1
cos.!nt/ � 'n.x/ �

Z L

0

2 �  0.x0/ � 'n.x
0/ dx0 : (3.246)
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In doing so

sin.!nt/

!n
� ı.t/ D 0 (3.247)

was taken into account. The integral in (3.246) just provides the expansion
coefficients An of the initial displacement 2 �  0.x0/ if expanded in terms of the
eigensolutions 'n.x0/. These eigensolutions are even or odd functions with respect
to x0 D L=2 if n is odd or even. For the reason of simplicity let us further assume that
 0.x0/ represents an even function with respect to x0 D L=2. Only odd expansion
coefficients will then become nonzero. We have therefore

2 �  0.x0/ D
1X

nD1
A2n�1 � '2n�1.x0/ ; (3.248)

and, finally,

 .x; t/ D
1X

nD1
cos

�
.2n � 1/�

L
ct

�
� A2n�1 � '2n�1.x/ : (3.249)

This expression describes the temporal behaviour of the d’Alembert solution. To see
if its behaviour is in correspondence with our experience let us consider the discrete
observation times

t D mL

c
I m D 1; 2; � � � : (3.250)

Since

cos Œ.2n � 1/m�� D .�1/m (3.251)

we find

 .x; t D mL=c/ D .�1/m �
1X

nD1
A2n�1 � '2n�1.x/ ; m D 1; 2; � � � : (3.252)

If m is an even number we can observe the initial displacement. On the other hand,
if m is an odd number we can observe the initial displacement but mirrored around
the x-axis. This agrees indeed with our observations and the result obtained in
Sect. 3.2.5.
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3.5 The Scalar Helmholtz Equation

The Helmholtz equation

r2 .r/ C k2  .r/ D � �.r/ (3.253)

results from the Fourier transformation of the wave equation with respect to time,
as we have seen in the last section.

r2
r G.r; r0/ C k2 G.r; r0/ D � ı.r � r0/ (3.254)

is the corresponding equation of its Green’s function. This equation is of our
special interest in this section as well as in the next chapter. It plays a major role
in different fields of physics. Scattering of acoustic and electromagnetic waves,
eigenvalue problems of strings as well as of waveguides in the microwave region
and in integrated optics are only a few examples which are also of considerable
practical importance. In this section we will essentially focus on the derivation
of the Green’s functions of the 1-, 2-, and 3-dim. Helmholtz equation by use of
the “classical method” while the next chapter addresses the application to different
scattering problems.

3.5.1 Green’s Functions of the One-Dimensional Helmholtz
Equation

Let us first derive the free-space Green’s function of the 1-dim. Helmholtz equation

Gxx.x; x
0/ C k2 G.x; x0/ D � ı.x � x0/ (3.255)

in an infinite region. According to our classical method ansatz (3.5) is used to this
end. This gives the equation

Fuu C k2 � F C 2 � Fu � ı.x � x0/ D � ı.x � x0/ (3.256)

with u D jx � x0j. The unknown function F.u/ is then the general solution of the
homogeneous, ordinary differential equation

Fuu C k2 � F D 0 : (3.257)

Its solution reads

F.u/ D C1 � e ikjx�x0j C C2 � e �ikjx�x0j (3.258)
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and meets already the requirement of Reciprocity. But we need a further condition to
reject one of the two constants to make the solution unique. This condition is the so-
called “Sommerfeld’s radiation condition”. It was already mentioned in connection
with the d’Alembert solution in the presence of a fixed boundary. The radiation
condition expresses our physical experience that any time harmonic source located
within a finite distance from the origin of the coordinate system can only produce
effects that move away from this source. There will be no effect that moves toward
this source coming from infinity. In the 1-dim. case, and if the time dependence
exp.�i!t/ is considered this condition reads

lim
jxj!1

�
@G.x; x0/
@jxj � i k G.x; x0/

�
D 0 (3.259)

(see Sommerfeld (1949)). From (3.258) we have to choose the one solution that is
in accordance with this condition. This is obviously

F.u/ D C1 � e ikjx�x0j : (3.260)

Constant C1 is then the result of the integration of the remaining part of equa-
tion (3.256) with respect to x. This gives

C1 D i

2k
: (3.261)

This constant can alternatively be determined by application of condition (3.173) of
the unit source in one dimension. But, please, note that we have to replace C1 on
the right-hand side of (3.173) by �1, due to the negative sign on the right-hand side
of (3.255). Thus we have the free-space Green’s function

G.x; x0/ D i

2k
� e ikjx�x0j (3.262)

of the 1-dim. Helmholtz equation in an infinite region subject to the radiation
condition (3.259). This agrees with (3.225).

A slight modification of this procedure can be applied to derive the Green’s
function of the 2-dim. Helmholtz equation subject to the periodicity condition

G.x D 0; yI x0; y0/ D G.x D L; yI x0; y0/ (3.263)

with respect to the x-coordinate. Regarding the y-coordinate we still consider the
infinite region and the radiation condition. This Green’s function is of importance
for solving the problem of a perpendicularly incident plane wave scattered on a
periodic grid, amongst others (see Rother and Kahnert (2013), Chap. 6 therein, for
example). Since

'n.x/ D 1p
L

� e ikxn x (3.264)
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with

kxn D 2�n

L
(3.265)

are normalized eigenfunctions in the interval x 2 Œ0;L� we can expand Dirac’s delta
function as well as the Green’s function according to

ı.x � x0/ D 1

L

1X
nD�1

e ikxn .x�x0/ (3.266)

and

G.x; yI x0; y0/ D 1

L

1X
nD�1

e ikxn .x�x0/ � Gn.y; y
0/ : (3.267)

Gn.y; y0/ are so far unknown expansion coefficients. Substitution in the 2-dim.
Helmholtz equation

Gxx.x; yI x0; y0/ C Gyy.x; yI x0; y0/ C k2 G.x; yI x0; y0/ D � ı.x � x0/ � ı.y � y0/
(3.268)

provides the 1-dim. Helmholtz equation

d2Gn.y; y0/
dy2

C k2yn Gn.y; y
0/ D � ı.y � y0/ ; (3.269)

where

kyn D
� p

k2 � k2xn I if k2 > k2xn

i
p

k2xn � k2 I if k2xn > k2 :
(3.270)

Its solution is identical with (3.262) but with k and jx�x0j replaced by kyn and jy�y0j.
The Green’s function of the 2-dim. Helmholtz equation subject to the periodicity
condition with respect to x and to the radiation condition with respect to y reads
therefore

G.x; yI x0; y0/ D i

2L

1X
nD�1

1

kyn
� e ikxn .x�x0/ � e ikyn jy�y0j : (3.271)

Moreover, the Reciprocity condition

G.x; yI x0; y0/ D G.x0; y0I x; y/ (3.272)
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applies to this Green’s function. But I would like also to point out the singular
behaviour at .x; y/ D .x0; y0/ that corresponds to the logarithmic singularity of the
Poisson equation, even if not obvious (see Linton (1998)). An alternative expression
of this Green’s function is presented shortly when dealing with the 2-dim. Helmholtz
equation in polar coordinates. Then the logarithmic singularity in the source point
becomes more obvious.

Let us finally consider the eigenvalue problem of the finite string with fixed ends
at x D 0 and x D L , as already announced in the foregoing section. It represents the
showpiece of the Fourier analysis and is defined by the homogeneous equation

d2 .x/

dx2
C k2 �  .x/ D 0 (3.273)

together with the homogeneous Dirichlet conditions

 .x D 0/ D  .x D L/ D 0 : (3.274)

The corresponding temporal problem was already considered in Sect. 2.6. Equa-
tions (3.242) and (3.243) are the normalized eigenfunctions and eigenvalues. The
Green’s function of the 1-dim. Helmholtz equation

Gxx.x; x
0/ C k2 � G.x; x0/ D � ı.x � x0/ (3.275)

subject to the conditions (3.274) and to the Reciprocity condition (3.4) may
therefore be represented by the bilinear expansion

G.x; x0/ D
1X

nD1

'n.x/ � 'n.x0/
k2n � k2

(3.276)

with its characteristic poles at k D kn, in close analogy to (2.287).

ı.x � x0/ D
1X

nD1
'n.x/ � 'n.x

0/ (3.277)

is the corresponding bilinear expansion of Dirac’s delta function. And, as also dis-
cussed in Sect. 2.6, if expanding the source �.x/ in terms of the same eigenfunctions
we can consider

 .x/ D
Z L

0

ı.x0 � x/ � �.x0/ dx0 (3.278)

with ı.x � x0/ according to (3.277) as the “source picture” of the Fourier series.
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3.5.2 Green’s Functions of the Two- and Three-Dimensional
Helmholtz Equation

The 2-dim. Helmholtz equation for the Green’s function in polar coordinates is
given by

G.2/
RR.R/ C 1

R
� G.2/

R .R/ C k2 G.2/.R/ D � 2 � ıp.R/ (3.279)

if the source point is located in the origin of the coordinate system. To derive the
free-space Green’s function of the infinite region requires the fulfillment of the 2-
dim. radiation condition (see Sommerfeld (1949))

lim
R!1

p
R �
�
@G.2/.R/

@R
� i k G.2/.R/

�
D 0 : (3.280)

As already done in connection with the Poisson equations of higher dimensions
ansatz

G.2/.R/ D F.R/ � H.R/ (3.281)

is used to solve this equation. The general solution of the unknown function F.R/
can be quickly obtained if looking at expressions (3.64)/(3.66) and (3.179) we
derived already for the 1-dim. Klein-Gordon- and the 2-dim. Poisson equation.
Regarding (3.179) we must only add the term k2 F.R/ to get the homogeneous
differential equation related to the 2-dim. Helmholtz equation. The resulting
expression becomes identical with (3.64) if replacing a by k and v by R. But now
we have to choose the Hankel function of first kind and zeroth order (instead of
Bessel’s function!) as the only solution of Bessel’s differential equation that is in
correspondence with the radiation condition (3.280) (see Abramowitz and Stegun
(1984), relation 9.2.3, for example). We thus have

F.R/ D C � H .1/
0 .kR/ : (3.282)

The unknown constant C can again be determined from condition (3.174) of the unit
source in two dimensions, and if replacing C1 on the right-hand side by �1. Taking
additionally the relations

H .1/
0 .z/ D J0.z/ C i Y0.z/ ; (3.283)

"
dH .1/

0 .z/

dz

#

z!0

D � i ŒY1.z/�z!0 ; (3.284)
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and

ŒY1.z/�z!0 D � 2

�z
(3.285)

into account (see Abramowitz and Stegun (1984), relation 9.1.9 therein) results in

C D i

4
: (3.286)

We thus get finally

G.2/.R/ D i

4
� H .1/

0 .kR/ � H.R/ (3.287)

for the free-space Green’s function of the 2-dim. Helmholtz equation in an infinite
region subject to the radiation condition (3.280). In so doing, we have proved (3.226)
true. Looking at relation 9.1.89 in Abramowitz and Stegun (1984), for example, we
can also discover the logarithmic singularity of H .1/

0 .z/ if z ! 0, as mentioned
before.

As also discussed in Sect. 3.5.1, solving the problem of a perpendicularly incident
plane wave scattered on a periodic grid requires a Green’s function of the 2-dim.
Helmholtz equation that is in correspondence with the periodicity condition (3.263).
Equation (3.271) is one possible expression. Based on (3.287) and by use of Green’s
theorem it was shown in Twersky (1956) that an alternative expression is given by

G.x; yI x0; y0/ D i

4
�

1X
nD�1

H .1/
0 .krn/ ; (3.288)

where

rn D
p
.x � x0 � nL/2 C .y � y0/2 : (3.289)

But this expression is quite slowly converging, which is why it is not used very often
(Linton 1998). The generalization to the case of an oblique incident plane wave on
a periodic grid can also be found in this reference.

The free-space Green’s function of the 3-dim. Helmholtz equation

G.3/
RR.R/ C 2

R
� G.3/

R .R/ C k2 G.3/.R/ D � ıs.R/ ; (3.290)

of the infinite region subject to the 3-dim. radiation condition (see Sommerfeld
(1949))

lim
R!1 R �

�
@G.3/.R/

@R
� i k G.3/.R/

�
D 0 (3.291)
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is of special importance for the scattering problems we intend to consider in the next
chapter. Looking back to the derivation of the Green’s function of the 3-dim. Poisson
equation (see Sect. 3.3.3) tells us that the unknown function F.R/ in ansatz (3.281)
must now be a solution of the homogeneous equation

FRR.R/ C 2

R
� FR.R/ C k2 � F.R/ D 0 (3.292)

Its general solution reads

F.R/ D C1 � e ikR

R
C C2 � e �ikR

R
: (3.293)

But only the first term

F.R/ D C1 � e ikR

R
(3.294)

of the right-hand side remains because of (3.291). The constant C1

C1 D 1

4�
(3.295)

results from condition (3.175) of the unit source, where C1 on the right-hand side
must again be replaced by �1. Thus we have

G.3/.R/ D e ikR

4�R
� H.R/ (3.296)

as the free-space Green’s function of the Helmholtz equation in an infinite region
subject to radiation condition (3.291). Moving the source point away from the origin
of the coordinate system results in

G.3/.r; r0/ D e ikjr�r0j

4�jr � r0j : (3.297)

The Green’s function (3.192) of the 3-dim. Poisson equation follows from k D 0,
and after multiplication of (3.296) by –1—a consequence of the different signs of
the inhomogeneities.



Chapter 4
Green’s Functions and Plane Wave Scattering

Traversing slit one, or traversing slit two, that is the question

4.1 General Aspects

It is not an exaggeration to say that scattering processes are of basic importance
in physics. They are used in different fields of physics to gain information about
the objects of interest and the interaction processes these objects may undergo. We
became already acquainted with scattering of a point mass on a rigid sphere and
the Kepler problem in the second chapter, and with d’Alembert’s solution in the
presence of a fixed boundary and a discontinuity in the foregoing chapter. Now
we are going to consider another scattering process—scattering of a plane wave
on different obstacles characterized by their geometry and material properties. On
the one hand, this is aimed at seeing the Green’s function of the 3-dim. Helmholtz
equation in action. On the other hand, dealing with this problem will allow us to
illustrate once again some of the aspects discussed in the Prologue from a more
abstract point of view. The experiences I have gained over the years when dealing
with electromagnetic wave scattering on nonspherical objects by using Green’s
functions was in fact an essential trigger to write this book.

As already mentioned at the beginning of Sect. 2.7, in a scattering experiment
the information is gained by comparing the asymptotic free states before and after
the scattering process. In what follows we start from the assumption of a steady
state situation with a time dependence given by exp.�i!t/. The scattering process
itself is assumed to be a local process in space. The incident plane wave represents
the asymptotic free state before the scattering process. The scattered field in the
nonlocal far field of the scattering object represents the asymptotic free state after
the scattering process. But both these asymptotic free states are abstract quantities,
at first, and appropriately measurable quantities like intensities and differential or
total cross-sections have to be defined. All the scattering processes we intend to
consider in this section are well-known from the literature and analytically solvable.
The reader who may be interested in more realistic scattering scenarios which can
be solved only by a considerable numerical effort is referred to our book (Rother
and Kahnert 2013). Green’s functions form again the methodical backbone of this
book.

© Springer International Publishing AG 2017
T. Rother, Green’s Functions in Classical Physics, Lecture Notes
in Physics 938, DOI 10.1007/978-3-319-52437-5_4
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Regarding the scattering problem of electromagnetic waves we have actually to
take the vector character of these fields into account. This would force us to solve
the vector-wave equation instead of the Helmholtz equation, in general. And all
the corresponding Green’s functions would become dyadic quantities. But for the
reason of simplicity, in this chapter we intend to consider only such cases that allow
for a decomposition of Maxwell’s equations into two independent systems each
of which is related to a scalar quantity governed by the Helmholtz equation and
appropriate boundary conditions. In so doing, we provide at once a solution of the
scattering problem of acoustic waves.

Figure 4.1 shows the general configuration of a scattering experiment that is of
our interest in what follows. The finite volume of the scatterer is enclosed by its
boundary surface S. The outer space � , on the other hand, is enclosed by this surface
and the spherical surface S1 of the nonlocal far field. This space is physically
characterized by the constant k. The local source �.r/ generates the primary incident
field  0.r/. This field interacts with an ideal metallic or acoustically soft scatterer.
As a result of this interaction process a scattered field  s.r/ is generated that
superposes the primary incident field. The volume inside the scatterer is assumed
to be free of fields. The primary incident field is a solution of the inhomogeneous
Helmholtz equation

	r2 C k2


 0.r/ D � �.r/ (4.1)

in � while the scattered field solves the corresponding homogeneous equation.
Green’s theorem for any two functions  .r/ and 
.r/ defined within any volume

Fig. 4.1 General
configuration of a scattering
experiment

S∞
S

k,Γ

scatterer

⊗
ρ(r)

n̂−

n̂
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� enclosed by the surface @� is given by

Z
�

�
 .r/ � r2
.r/ � 
.r/ � r2 .r/

�
dV.r/ D

I
@�

�
 .r/ � @
.r/

@On � 
.r/ � @ .r/
@On

�
dS.r/ : (4.2)

The radiation condition (3.291) must hold on the nonlocal surface S1 for any
primary incident field generated by a local source, for the scattered field, and for the
free-space Green’s function of the 3-dim. Helmholtz equation, as already discussed
in the foregoing chapter. If identifying  .r/ with the total field

 .r/ D  0.r/ C  s.r/ ; (4.3)


.r/with the free-space Green’s function (3.297) of the 3-dim. Helmholtz equation,


.r/ D G.3/.r; r0/ ; (4.4)

and if taking its Reciprocity into account we get from Green’s theorem

 .r/ D
Z
�

G.3/.r; r0/ � �.r0/ dV.r0/

�
I

S

�
 .r0/ � @G.3/.r; r0/

@On0 � G.3/.r; r0/ � @ .r
0/

@On0

�
dS.r0/ : (4.5)

The normal derivative at the scatterer surface is defined by

@f .r/
@On WD On � rf .r/ : (4.6)

It is important to note that the gradient operation in expression @ .r0/=@On0 must
initially be applied to the field outside the boundary surface of the scatterer. The
transition to the scatterer surface is performed only afterwards. The first term on the
right-hand side of (4.5) just provides the primary incident field  0. The second term
represents the scattered field  s. It was moreover assumed that the scattered field
has no influence on the local source �.

 .r/ D 0 I r 2 S (4.7)

is the boundary condition we additionally require for the total field at the scatterer
surface. With this homogeneous Dirichlet condition we are able to describe the
scattering process of an electric or acoustic field on an ideal metallic or acoustically
soft object. But regarding the electromagnetic case boundary condition (4.7) holds
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only for fields with a certain polarization. It can therefore only be applied if
Maxwell’s equations can be splitted into two scalar Helmholtz equations each of
which is related to a certain polarization. In contrast to (4.7) the homogeneous von
Neumann boundary condition

@ .r/
@On D 0 I r 2 S (4.8)

applies to the field with the respective other polarization. This boundary condition
is related in acoustics to the scattering problem of an acoustically hard object. But
in what follows we will restrict the considerations to the problems described by the
homogeneous Dirichlet condition. Applying this condition to (4.5) by shifting the
observation point r toward the surface S provides

�  0.r/ D pv
I

S

@ .r0/
@On0 � G.3/.r; r0/ dS.r0/ I r 2 S ; (4.9)

where “pv” in front of the integral denotes again the “principal value” integration.
The necessity of such an integration results from the singular behaviour of the
Green’s function (3.297) of the 3-dim. Helmholtz equation if r D r0. It is defined as
follows:

pv
I

S
G.3/.r; r0/ � f .r0/ dS.r0/ WD lim

Sı!0

Z
S�Sı

G.3/.x; Nx/ � f .r0/ dS.r0/ : (4.10)

Sı denotes a small surface element that encloses the singular point. It is excluded
from the surface integral since it does not contribute to this integral in the limit
limSı!0. To be more specific we consider the following decomposition of the surface
integral:

I
S

G.3/.r; r0/ � f .r0/ dS.r0/ D
Z

S�Sı

G.3/.x; Nx/ � f .r0/ dS.r0/ C
Z

Sı

G.3/.r; r0/ � f .r0/ dS.r0/ I r 2 S : (4.11)

It can then be shown that for any sufficiently smooth function f .r/ with no
singularities along the surface S

lim
Sı!0

Z
Sı

G.3/.r; r0/ � f .r0/ dS.r0/ ! 0 I r 2 S ; (4.12)

holds. To prove this, let us consider the surface integral

Z
Sı

G.3/.r; r0/ � f .r0/ dS.r0/ I r 2 S : (4.13)
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Since Sı is a small surface element the Green’s function (3.297) can be replaced by
its static approximation

G.3/.r; r0/ � 1

4�jr � r0j : (4.14)

Sı can furthermore be assumed w.l.o.g. to represent a surface patch with a circular
boundary, and with the z-axis of the coordinate system going through the center
of the boundary circle (compare Fig. 4.2). The observation point r is placed in the
center of the circle in distance a from the origin of the coordinate system. jrj D
jr0j D a is assumed to be constant across the small surface element Sı. In spherical
coordinates we have

dS.r0/ D a2 sin � 0 d� 0 d
0 ; (4.15)

and

jr � r0j � p
2 � a � 	1 � cos � 0
 12 : (4.16)

Together with 2� , that results from the integration with respect to 
0, we thus get
the approximate expression

Z
Sı

f .r0/
4�jr � r0j dS.r0/ � f .a/

2
p
2

� a �
Z � 0

ı

0

sin � 0

.1 � cos � 0/
1
2

d� 0 : (4.17)

In so doing, we have moreover replaced the sufficiently smooth function f .r0/ by its
value in point .r D a; � D 0ı; 
 D 0ı/ everywhere across Sı. Since the possible
angles � 0 are very small on Sı it is sufficient to approximate cos � 0 by the first two

z

x

y

•
S

Sδ

z = a

n̂

Fig. 4.2 Geometrical configuration to calculate the contribution of the surface integral (4.13)
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terms of its Taylor series (i.e., by 1 � � 0 2=2) and sin � 0 by � 0. This gives finally

Z
Sı

f .r0/
4�jr � r0j dS.r0/ � f .a/

2
� a � � 0

ı : (4.18)

This vanishes indeed if � 0
ı ! 0. Now we can continue with expression (4.9). The

normal derivative on the right-hand side is defined as the induced surface current js.
This results in the well-known integral equation

�  0.r/ D pv
I

S
js.r0/ � G.3/.r; r0/ dS.r0/ I r 2 S (4.19)

to calculate the unknown surface current. The total field outside the scatterer is then
given by

 .r/ D
Z
�

G.3/.r; r0/ � �.r0/ dV.r0/ C
I

S
G.3/.r; r0/ � js.r0/ dS.r0/ : (4.20)

This is another example of what I formally called the “generalized understanding of
Huygens’ principle” in the Prologue—the replacement of the interaction of a scalar
plane wave with an ideal metallic or acoustically soft obstacle by an equivalent
source called “induced surface current”. When dealing with the scattering problem
of an ideal metallic sphere later on we will become acquainted with an alternative
approach that avoids the singularity problem of the Green’s function considered
above. But the derivation of Eq. (4.19) has revealed moreover that the field quantities
 .r0/ and @ .r0/=@On0 are not independent of each other. They are linked by an
inhomogeneous Fredholm integral equation of the second kind (Maue’s integral
equation) at the scatterer surface. That is, the scattering problem is already uniquely
solvable if only one of these quantities is given! A more detailed discussion of this
aspect can be found in Hönl et al. (1961). Even if this book exists only in German,
it is highly recommended for those readers who intend to go further into scattering
problems.

Starting from Eq. (4.5) it is straightforward to derive the classical Huygens’
principle. In so doing, it is assumed that the primary source � as well as the scatterer
are confined within the volume bounded by the surface S� (see Fig. 4.3). We ask
for the field in the source-free region bounded by S� and S1. The first term on the
right-hand side of (4.5) vanishes and it remains

 .r/ D �
I

S�

�
 .r0/ � @G.3/.r; r0/

@On0 � G.3/.r; r0/ � @ .r
0/

@On0

�
dS.r0/ : (4.21)

That is, the field in the source-free region is known if its behaviour along the
boundary surface S� is known. But it should be emphasized once again that  .r0/
and @ .r0/=@On0 are related by an integral equation. The boundary surface S� divides
the region � into a region with a source and a source-free region, and it can be
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Fig. 4.3 Scattering
configuration to discuss
Huygens’ principle

S∞
S

k,Γ

scatterer

⊗
ρ(r)

n̂−

n̂

Sρ

chosen in such a way that it fits into the physical situation under consideration. We
face this problem when solving the scattering of a plane wave on the double-slit.
But before we will come to this example, let us look briefly at the somehow strange
nature of the object “plane wave”.

 0.x; t/ D E0 � e i.kx�!t/ (4.22)

represents such an object that is traveling with an amplitude E0 along the positive
x-axis. We will omit the time dependency in what follows. The remaining space
dependent part is obviously a solution of the 1-dim., homogeneous Helmholtz
equation

d2 0.x/

dx2
C k2 �  0.x/ D 0 : (4.23)

In contrast to the Green’s function (3.262) the radiation condition (3.259) does
not applies to  0.x/. That is, the object “scalar plane wave”—characterized by the
wave number k and amplitude E0—exists without any source, and, therefore, must
be given a priori in corresponding scattering experiments. But this is in contrast
to our concept formulated in the Prologue. There we have required that any state
of an object must be related to a source/cause to express the basic principle of
Causality. And in any real scattering experiment the primary incident plane wave
will be generated in fact by a certain real source (a widespread LASER beam, an
antenna, etc.). And if we intend to express such a plane wave by the first term on
the right-hand side of (4.5) a source is a necessary prerequisite. To see how we can
relate a source to such a plane wave let us consider the far field approximation of the
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3-dim. Green’s function (3.297) if a unit source is located on the negative x-axis but
at a very large distance from the origin of the coordinate system. That is, we have

r0 D .�x0
b; 0; 0/ I x0

b >> x; y; z ; (4.24)

where r D .x; y; z/ are the coordinates of the observation point located close to the
origin of the coordinate system. The denominator of (3.297) can then be replaced
by x0

b. But the phase term jr � r0j must be approximated more precisely by

jr � r0j D
p

r2 C r0 2 � 2rr0 � x C x0
b (4.25)

if the angle between source and observation point is close to 1800. This happens
if the observation point is located close to the positive x-axis—a situation we will
consider in the double-slit experiment. The Green’s function reads therefore

G.3/.r; r0/ � e ikx0
b

4�x0
b

� e ikx : (4.26)

This is nothing but a plane wave traveling along the positive x-axis with an
amplitude given by

e ikx0
b

4�x0
b

: (4.27)

The space dependent part of the plane wave (4.22) follows from the integral
representation

 0.x/ D
Z

G.3/.r; r0/ � �.r0/ dx0 dy0 dz0 ; (4.28)

with the approximation (4.26) of the Green’s function and the source

�.x0/ D 4�x0
b e �ikx0

b E0 � ı.x0 C x0
b/ ı.y

0/ ı.z0/ : (4.29)

4.2 Double-Slit Experiments

4.2.1 Classical Double-Slit Experiment

This experiment was elected in 2002 as one the most beautiful experiments of
physics by the “Physics World” journal. It was first accomplished by T. Young
in the nineteenth century to demonstrate the wave nature of light. But it plays
also a major role in the discussion regarding the epistemological consequences of
Quantum Mechanics. Figure 4.4 shows the experimental setup. Two slits with the
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Fig. 4.4 Scattering of a
scalar plane wave ( 0)
perpendicularly incident from
the left on a double-slit (DS).
The measurement screen
(MS) is placed in the far field
behind the double-slit. Both
slits S1 and S2 are
symmetrically placed with
respect to the x-axis, infinitely
extended into the z-direction,
and characterized by the same
width a
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same width a and at a center distance of a C b in an ideal metallic screen are placed
symmetrically with respect to the x-axis. The ideal metallic screen itself is stretched
across the whole y-z-plane. A scalar plane wave

 0.x/ D E0 � e ikx (4.30)

is perpendicularly incident on the double-slit from the left. The configuration does
not change along the z-direction if the plane wave (4.30) is generated by a line
source located along the z-direction on the left-hand side of—but far away from the
double slit. This allows us to neglect the z-dependence and to restrict the scattering
problem to the x-y-plane only. The ideal metallic screen separates the source region
of the incident plane wave generated by the source (4.29) on its left-hand side from
the source-free region on its right-hand side. The field in the source-free region
on the right-hand side can be calculated from the field distribution in the plane of
the screen, according to Huygens’ principle (4.21). Within the framework of the
Kirchhoff approximation it is assumed that as well as its normal derivative @ =@On0
are nonzero and identical with the corresponding quantities of the incident plane
wave only in the slits. The Kirchhoff approximation is not without controversy and
raises the issue of its applicability. A detailed analysis of this aspect can be found
in Hönl et al. (1961). It seems intuitively comprehensible from the point of view of
the Geometric Optics, i.e., if the slit width a is large compared to the wavelength of
the incident field, and if neglecting diffraction effects. On the other hand, we have
already mentioned that the two quantities  and @ =@On0 along the ideal metallic
screen are not independent of each other and related by an integral equation. The
situation becomes even more complicate by the sharp edges of the slits. This requires
the formulation of additional edge conditions. These conditions have to take into
account that a sharp edge may act as a passive scatterer but not as an additional
source of energy. In a rigorous theory the scattering problem becomes only then
uniquely solvable. And it can indeed be shown that the Kirchhoff approximation
fails near the edges. However, regarding a perpendicularly incident plane wave, and
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if only looking for the solution in the far field behind the slits and in near forward
direction (i.e., for relatively small angles ˛) the theoretical results obtained with
the Kirchhoff approximation are in good correspondence with the experiments. The
following considerations are therefore restricted to this situation but from the point
of view of Green’s functions. The obtained solution is the well-known Fraunhofer
diffraction on a double-slit.

Starting from (4.21) and the Kirchhoff approximation we get the following
expression for the field in the source-free region behind the screen:

 .r/ D � E0

Z � b
2�a

b
2Ca

"
e ikx0 � @G.3/.r; r0/

@x0 � G.3/.r; r0/ � @e ikx0

@x0

#

x0D0
dy0 ;

(4.31)

where r D .x; y/, R D p
x2 C y2, r0 D .x0; y0/,

G.3/.r; r0/ D e ikg.x0;y0/

4�g.x0; y0/
; (4.32)

and

g.x0; y0/ D
p
.x � x0/2 C .y � y0/2 : (4.33)

The normal derivative of the Green’s function in the far field approximation (the
derivation with respect to x0) is given by

�
@G.3/.r; r0/

@x0

�
x0D0

� � ik � e ikg.x0;y0/

4�R
: (4.34)

In so doing, it was assumed that x >> y holds. The contribution of the term
1=g2.x0; y0/ was neglected accordingly. g.x0; y0/ � R was used to approximate the
denominator. Regarding the phase term—in order to consider the y-dependence of
the observation point P.x; y/ on the measurement screen—g.x0; y0/ is approximated
by

g.x0; y0/ � R � y � y0

R
D R � y0 � sin˛ D r.y0/ (4.35)

(see Fig. 4.4). Using these approximations we can decompose (4.31) into the two
slit integrals

 .˛/ D  1.˛/ C  2.˛/ D f .˛/ � E0 � e ikR

R
D

ik

2�
�
"Z b=2Ca

b=2
e �iky0 sin˛ dy0 C

Z �b=2

�b=2�a
e �iky0 sin˛ dy0

#
� E0 � e ikR

R
(4.36)
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(see Elmore and Heald (1985), for example), where

f .˛/ D ik

2�
�
"Z b=2Ca

b=2
e �iky0 sin˛ dy0 C

Z �b=2

�b=2�a
e �iky0 sin˛ dy0

#
: (4.37)

We will denote this quantity as the ˛-dependent Fraunhofer approximation of the
scattering amplitude of the double-slit. It should also be mentioned at this point that
instead of starting with the 3-dim. Green’s function G.3/.r; r0/ and reducing it to the
2-dim. situation one can also start with the 2-dim. Green’s function

G.2/.r; r0/ D i

4
� H .1/

0 .kjr � r0j/ : (4.38)

The far field behaviour of the Hankel function produces the same slit integrals. But
regarding the dependence on R we then have eikR=

p
R instead of eikR=R, as it must

be to fit into the 2-dim. radiation condition. However, the characteristic interference
pattern of the intensity of the double-slit in the far field agrees in both cases since it is
essentially a consequence of the superposition of the two slit integrals. Introducing
the two impressed sources

�1.y
0/ D 2 i k E0 � H

�
y0 � b

2

�
� H

�
b

2
C a � y0

�
(4.39)

�2.y
0/ D 2 i k E0 � H

�
�y0 � b

2

�
� H

�
b

2
C a C y0

�
(4.40)

which represent the interaction contributions of the slits allows us moreover to
express  .˛/ by our pivotal relation

 .˛/ D
Z 1

�1
G.y; y0/ � �.y0/ dy0 ; (4.41)

where we have to use

G.y; y0/ D e ikr.y0/

4�R
(4.42)

with r.y0/ according to (4.35), and if applying the source

�.y0/ D �1.y
0/ C �2.y

0/ : (4.43)

The integrals in (4.37) result in the following contributions of each single slit S1
and S2 to the scattering amplitude (4.37):

f1.˛/ D ika

2�
� sin�a

�a
� e �i�C (4.44)
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and

f2.˛/ D ika

2�
� sin�a

�a
� e Ci�C ; (4.45)

where

�C D �a C �b (4.46)

�a=b D k � a=b

2
� sin ˛ : (4.47)

The superposition of these two contributions provides finally the scattering ampli-
tude

f .˛/ D f1.˛/ C f2.˛/ D ika

�
� sin�a

�a
� cos�C (4.48)

of the double-slit. The ˛-dependent intensity of the double-slit is calculated from

IDS.˛/ D j f .˛/j2 : (4.49)

We thus get the characteristic expression

IDS.˛/ D
�

ka

�

�2
� sin2 �a

�2a
� cos2 �C D 4 � IS.˛/ � cos2 �C (4.50)

for the double-slit, where

IS1 .˛/ D IS2 .˛/ D IS.˛/ D
�

ka

2�

�2
� sin2 �a

�2a
(4.51)

are the corresponding intensities of the single slits. When dealing with plane wave
scattering on a spherical object at the end of this chapter we will derive the so-
called “optical theorem”. It relates the total extinction cross-section—a quantity that
is identical with the total scattering cross-section if there is no absorption—to the
scattering amplitude in forward direction by the relation

�ext D 4�

k
� Imff .0/g : (4.52)

This theorem enjoys a quite interesting history (see Newton (1976)) and is of some
importance not only in classical physics but also in Quantum Mechanics. We will
use it later on to discuss the “extinction paradox”. To get a first impression of this
paradox already at this point let us apply (4.52) to the scattering amplitudes (4.44)
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and (4.48) of the single- and double-slit. This gives

�
.S/
ext .˛ D 0/ D 2 a (4.53)

and

�
.DS/
ext .˛ D 0/ D 4 a ; (4.54)

respectively. It is just twice of the respective geometrical slit width! However, from
the point of view of the Geometric Optics (i.e., if the slit width is large compared
to the wavelength of the incident plane wave so that this plane wave is replaced
by a bundle of noninteracting rays) one would expect that the total extinction- or
scattering cross-section equals the geometrical slit width. The total cross-sections,
on the other hand, is usually calculated from the integration over all possible
scattering angles ˛ 2 Œ��=2; �=2�. It is therefore questionable to apply (4.44)
and (4.48) to this approach since these two expressions have been derived by
assuming small angles ˛ only. It takes a less approximate scattering theory to be
more accurate. That (4.53) and (4.54) are independent of the wavelength of the
incident field and the slit width may serve as an indication that these results must
be considered with some caution. But it was quite interesting for me to see that they
agree already with what is known from a more rigorous but also more sophisticated
theory, as it will be discussed at the very end of this chapter.

Expression (4.51) for the single slit is often used in Quantum Mechanics to
discuss the uncertainty relation of position and momentum (see Burkhardt and
Leventhal (2008), for example). In so doing, it is assumed that describing scattering
of quantum particles on a single slit requires already a fallback to a methodology
known from classical wave scattering. Regarding (4.51) the maximum of the
intensity is at �a.˛ D 0/ D 0, and the first minimum is at �a D � . This allows one
to determine the uncertainty of the momentum 4py in y-direction if the wavelength
of the incident plane wave determines the momentum of the quantum particle in
x-direction before the scattering process according to the de-Broglie relation. The
uncertainty of the position 4y, on the other hand, is identical with the slit width. The
angular dependent intensity (4.51) itself—after appropriate normalization—can be
interpreted as the probability that a quantum object perpendicularly incident on a
single slit will be scattered at an angle of ˛ into the direction of the measurement
screen.

But there is another aspect I want to emphasize at this place. Figures similar
to the one presented in Fig. 4.5 are frequently utilized in discussions regarding the
principle of complementarity or the wave-particle dualism in Quantum Mechanics.
I do not want to step into this discussion but to point to a problem that is related
to this figure, and that is often ignored in its interpretation. We first note that,
while the interference pattern IDS.˛/ of plane wave scattering on a double-slit is
depicted correctly and in agreement with (4.50) this does not holds for the intensity
distribution IS1 .˛/ or IS2 .˛/ according to (4.51) if one of the two slits is closed.
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Fig. 4.5 Representation of
the results of plane wave- or
quantum particle scattering
on a double-slit that can
frequently be found in the
literature. The intensity
distribution IDS.˛/ if both
slits are open is correctly
depicted. But the intensity
distributions IS1 .˛/ if slit S2 is
closed, and IS2 .˛/ if slit S1 is
closed are incorrect and not in
agreement with (4.51)
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Fig. 4.6 Correct
representation of the intensity
distributions of plane wave
scattering on a single slit
according to (4.51), i.e., if
either slit S1 or S2 is closed in
the double-slit experiment
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This representation suggests that it would be possible to decide in a corresponding
scattering experiment with a primary incident plane wave and by just looking at the
intensity distribution on the measurement screen in the far field whether slit S1 or slit
S2 is closed. But this is impossible as one can see from the expressions (4.44), (4.45),
and (4.51). A local shift of a single slit along the y-axis appears in the far field only
as a contribution in the phase term �C. It is therefore washed out if calculating
the intensity. Its maximum value can always be found in the forward direction at
˛ D 0, as represented in Fig. 4.6. That is, from the intensity measurement in the
far field we are only able to find out whether two slits were open or if one slit was
closed. On the other hand, if using classical particles instead of a plane wave in
the double-slit experiment, then we will indeed observe a frequency distribution on
the measurement screen that agrees with the intensities represented in Fig. 4.5 if
either slit S1 or S2 is closed. But now the frequency distribution does not agrees
with the intensity distribution for both slits open. That is, now we are able to decide
whether slit S1 or S2 was closed or if both slits were open. As a consequence we may
state that scattering on a single slit will already allow us to distinguish between the
particle- or wave nature of the objects used in this experiment. By the way, a first
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real double-slit experiment in Quantum Mechanics with electrons was performed in
1961 by C. Jönsson (see Jönsson (1961)). Especially Fig. 7 in this paper shows the
typical frequency distribution of the Fraunhofer diffraction.

Exercise: Development of a computer program for the single- and double-
slit experiment. Use this program to show that the intensity of the double-slit
in forward direction is always 4-times the intensity of the single slit. What
happens if the intensities of several double-slits with different slit distances but
with the same slit width are averaged? Compare the result of this averaging
process with the sum of the intensities of the two single slits! What happens if
more and more slits with identical slit width and distances are added? For an
initial program see Appendix A.1.

4.2.2 Interaction of a Linearly Polarized Plane Wave with a
Polarizing Filter

The following discussion is aimed at a preparation of the description of the modified
double-slit experiment that is performed with a linearly polarized plane wave, and
that uses polarizing filters to cover the two slits. It can be considered as the classical
analog to the quantum eraser. But we will also benefit from the following discussion
in the next chapter, when deriving the Green’s function that can be related to Bell’s
experiments. The interaction of a linearly polarized plane wave with a polarizing
filter is the only situation where we abandon the restriction to scalar waves. It is our
main goal here to demonstrate that

• there is an equivalence between a basis transformation and an interaction that
rotates the plane of linear polarization of a plane wave. This issue is re-addressed
at the end of this chapter to describe plane wave scattering on a sphere.

• the basis transformation can be described by use of an “intensity operator” that is
the classical analog to the statistical operator known from Quantum Mechanics.
This intensity operator contains already “negative weights” comparable to the
“negative quasi-probabilities” known from Quantum Optics.

A linearly polarized plane wave traveling along the positive x-axis and with an
unit amplitude vector oscillating in the plane that forms an angle of 45ı with the
positive z-axis can be expressed according to

j i D j 1i C j 2i D e ikx

p
2

� jyi C e ikx

p
2

� jzi (4.55)

by the superposition of two scalar subfields (see Fig. 4.7). The unit vectors jzi and
jyi given by

jzi D .1; 0/ (4.56)

jyi D .0; 1/ (4.57)
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Fig. 4.7 Representation of a
linearly polarized plane wave
j i as a superposition of two
disjoint subfields which are
orthogonal among each other
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Fig. 4.8 Representation of
the field (4.55) if the
coordinate system is rotated
by an angle ˛p
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are the basis vectors of the considered coordinate system. The two subfields j 1i
and j 2i are orthogonal among each other. Moreover, since they do not contain
common basis vectors we will call these subfields being disjoint. The intensity of
this linearly polarized plane wave is given by the scalar product

I D h j i D 1 : (4.58)

It is identical with the sum of the intensities Iy D Iz D 1=2 of the subfields.
That there is no interference contribution from this superposition is a consequence
of the disjoint character of the two subfields. The intensity Iy of the subfield
j 1i D e ikx=

p
2 � jyi can be measured by using a polarizing filter with its forward

direction in parallel to the y-axis. The intensity Iz of the other subfield can be
measured accordingly but not at the same time.

Next, let us rotate the coordinate system by an angle ˛p in a mathematical positive
sense (see Fig. 4.8). It is then our goal to express the field (4.55) by the new basis
vectors jy0i and jz0i. To this end, we first note that the new and old basis vectors are
related by

� jy0i
jz0i

�
D R˛p �

� jyi
jzi
�
; (4.59)
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where

R˛p D
�

cos˛p � sin˛p

sin˛p cos˛p

�
; (4.60)

is the matrix of rotation. Please, note that the elements of the column vectors on the
left- and right-hand side of (4.59) are just the new and old basis vectors. We thus
have

jy0i D .� sin ˛p; cos˛p/ (4.61)

jz0i D .cos˛p; sin ˛p/ : (4.62)

The inverse of this transformation reads

� jyi
jzi
�

D R �1
˛p

�
� jy0i

jz0i
�
; (4.63)

where

R �1
˛p

D
�

cos˛p sin ˛p

� sin ˛p cos˛p

�
(4.64)

is the inverse of the matrix of rotation. The matrix of rotation is a unitary matrix
since

R �1
˛p

� R˛p D R tp
˛p

� R˛p D E (4.65)

holds. Applying (4.63) to the subfields of (4.55) results in the new subfields

j 0
1i D e ikx

p
2

� 	cos˛p � jy0i C sin˛p � jz0i
 (4.66)

and

j 0
2i D e ikx

p
2

� 	� sin˛p � jy0i C cos˛p � jz0i
 : (4.67)

These subfields are still orthogonal among each other but from the same 2-dim.
space represented by the basis vectors jy0i and jz0i. We will therefore call the new
subfields (4.66) and (4.67) being nondisjoint because they do have basis vectors in
common. The superposition of the new subfields provides the representation

j i D e ikx

p
2

� �	cos˛p � sin ˛p

 � jy0i C 	

cos˛p C sin ˛p

 � jz0i� (4.68)
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of (4.55) in the rotated coordinate system. Since jy0i and jz0i are orthogonal unit
vectors the total intensity is again given by sum of the intensities of the respective
components, i.e., we have

I D h j i D Iy0 C Iz0 D 1 ; (4.69)

where

Iy0 D 1

2

	
1 � 2 cos˛p sin ˛p



(4.70)

and

Iz0 D 1

2

	
1 C 2 cos˛p sin˛p



: (4.71)

Please, note the characteristic interference term “2 cos˛p sin ˛p” in these expres-
sions that results from the superposition of the contributions from the new basis
vectors jy0i and jz0i in (4.66) and (4.67). But the contributions of this interference
term are obviously balanced in such a way that the total intensity is preserved.

Next, let us introduce an “intensity operator” OI by

OI WD I0 �
4X

iD1
pi � j
iih
ij (4.72)

with weights pi given by

p1 D p2 D 1

2
(4.73)

p3 D � p4 D cos˛p � sin˛p ; (4.74)

the total intensity I0, and vectors

j
1i D cos˛p � jy0i C sin˛p � jz0i D cy0 � jy0i C cz0 � jz0i (4.75)

j
2i D � sin ˛p � jy0i C cos˛p � jz0i D dy0 � jy0i C dz0 � jz0i (4.76)

j
3i D jz0i (4.77)

j
4i D jy0i : (4.78)

These vectors are normalized to unity,

h
ij
ii D 1 I i D 1; � � � ; 4 : (4.79)
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But only j
1i and j
2i as well as j
3i and j
4i are orthogonal among each other.
The sum of the weights gives unity,

4X
iD1

pi D 1 : (4.80)

Moreover, p3 and p4 compensate each other, i.e. we have a negative weight (weight
p4) in (4.72). This expresses the fact that the interference term does not contribute
to the total intensity I0. On the other hand, j
3i and j
4i are responsible for
a redistribution of the total intensity to the intensities of the single components
according to (4.70) and (4.71). The weights p3 and p4 are obtained from the
amplitude functions of the vectors j
1i and j
2i in the following way:

p3 D cz0 � dz0 (4.81)

p4 D cy0 � dy0 : (4.82)

It is a consequence of the conservation of the total intensity of the field in the original
and in the rotated coordinate system. The intensities Iy 0 and Iz 0 of the components
can then be calculated from this intensity operator according to

Iy 0 D hy0j OI jy0i (4.83)

Iz 0 D hz0j OI jz0i : (4.84)

This is in close analogy to the calculation of probabilities from the statistical
operator in Quantum Mechanics.

One may ask why I was going to complicate the simple issue of a coordinate
transformation in this way? Simply because I wanted to demonstrate the applica-
bility of a formalism known from Quantum Mechanics to this classical situation.
As a consequence of the superposition of the two subfields (4.66) and (4.67) and
the resulting interference terms we could observe a negative weight in the intensity
operator that can be related to this classical situation. This can be compared to the
appearance of “negative quasi-probabilities” known from the Wigner functions and
the Glauber-Sudarshan equation in Quantum Optics. Now, let us assume that there
is a polarizing filter fixed to the y-axis and with a forward direction in parallel to this
axis. After rotating the coordinate system by an angle of ˛p about the x-axis we can
calculate the intensity behind the filter simply from (4.83). Figure 4.9 shows three
different positions. Case (a) results in the intensity Iy0 D 1=2, case (b) in Iy0 D 1, and
case (c) in Iy0 D 0. These intensities are obviously asymmetric with respect to the
two cases (b) and (c), i.e. with respect to the rotation by ˛p D �=4 or ˛p D ��=4
of the coordinate system with the polarizing filter fixed to the y-axis. On the other
hand, if we consider the primary field

j i D jyi (4.85)
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Fig. 4.9 Interaction of the
linearly polarized plane wave
of Fig. 4.7 with a polarizing
filter in three different
positions. (a): polarizing filter
in position ˛p D 0, (b):
polarizing filter in position
˛p D ��=4, (c): polarizing
filter in position ˛p D �=4
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the intensity operator becomes simply

OI D j
1ih
1j : (4.86)

Thus we get the following intensities for the three positions depicted in Fig. 4.9:
Iy0 D 1 in case (a), and Iy0 D 1=2 in both the cases (b) and (c). This now symmetric
behaviour is due to the fact that (4.85) reads in the rotated coordinate system

j i D cos˛p � jy0i C sin ˛p � jz0i : (4.87)

The original y-component of the primary field is reduced to cos˛p, and, corre-
spondingly, its intensity reduces to Iy 0 D cos2 ˛p. With such measurements we are
able to determine the state of linear polarization of the primary field, for example.
If the polarizing filter is fixed to the z-axis we can proceed in a similar way by
employing (4.84) instead of (4.83). The generalization of the intensity operator to a
linearly polarized plane wave j i given in the original coordinate system by

j i D sin˛ � jyi C cos˛ � jzi (4.88)

is obtained if replacing the weights (4.73) and (4.74) by the new weights

p1 D sin2 ˛ (4.89)

p2 D cos2 ˛ (4.90)

p3 D � p4 D 2 � cos˛ � sin ˛ � cos˛p � sin˛p : (4.91)

The weights considered before and (4.86) are special cases of ˛ D �=4 and ˛ D
�=2. And, moreover, we can state that the following two processes are equivalent
with respect to the intensity measurement behind the polarizing filter: We can either
rotate the coordinate system by an angle of C˛p while holding the primary field
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fixed, or, equivalently, we can actively rotate the plane of polarization of the primary
field (4.55) by an angle of �˛p while the coordinate system is fixed. In other words:
The rotation of the plane of polarization of a linearly polarized plane wave by a
certain interaction process (with �=2-wave plates, for example) can be described by
a corresponding basis transformation.

To conclude this discussion we will consider the transformation (4.68) of the
linearly polarized plane wave (4.55) from a different point of view. We ask for the
relation between the new coefficients

cz 0 D 1p
2

� 	cos˛p C sin˛p



(4.92)

cy 0 D 1p
2

� 	cos˛p � sin ˛p



(4.93)

with respect to the basis vectors jz0i and jy0i, and the old coefficients

cz D cy D 1p
2

(4.94)

with respect to the basis vectors jzi and jyi. This relation is established by the T-
matrix we introduced already in Sect. 2.6. Its elements are again calculated from
the scalar products of the old and new unit vectors (4.56)/(4.57) and (4.61)/(4.62)
according to

T WD
� hz0jzi hz0jyi

hy0jzi hy0jyi
�
: (4.95)

It is identical with (4.64), i.e., with the inverse of the matrix of rotation. Then we
have

�
cy

cz

�
D T �

�
cy0

cz0

�
: (4.96)

Calculating

	
cy; cz


 �
�

cy

cz

�
D 	

cy0 ; cz0


 � T tp � T �
�

cy0

cz0

�
(4.97)

we get the relation

c2y C c2z D c2y0 C c2z0 ; (4.98)

where we used the unitarity relation (4.65). This is nothing but the expression of the
conservation of the total intensity for this transformation. But instead of the T-matrix
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we can also introduce the so-called S-matrix

S D E C 2 � W : (4.99)

The “interaction matrix” W therein is given by

W D 1

2
� .T � E/ : (4.100)

In the simple situation considered here the S-matrix is nothing but the T-matrix. It
relates also the old and new coefficients according to

�
cy

cz

�
D S �

�
cy0

cz0

�
: (4.101)

But the S-matrix is more appropriate if taking up the interaction position, i.e. the
position of an active rotation of the primary field (4.55) by an additional mechanism.
If the interaction matrix W vanishes, then there is no additional rotation of the
primary plane wave, and the new coefficients are just the old coefficients. We will
face all these matrices in more complex situations later on.

4.2.3 Modified Double-Slit Experiment

The classical double-slit experiment considered before is now modified as follows
(see Fig. 4.10): Slit S1 is covered with a polarizing filter with its forward direction
in parallel to the y-axis. Slit S2, on the other hand, is covered with a polarizing filter
with its forward direction in parallel to the z-axis. The plane of linear polarization
of the incident plane wave has a slope of 45ı with respect to the positive z-axis,

Fig. 4.10 Modified
double-slit experiment.
Geometry as in Fig. 4.4 but
now with two additional
polarizing filters masking the
two slits. The polarizing
filters are oriented
perpendicularly to each other

y

x
0

MSDS
PF

S1

S2

ψ0

b/2 + a

b/2

−b/2

−b/2 − a

R••
••
•

--
--
--

α
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as already shown in Fig. 4.7. As mentioned at the beginning of this section, this
modified double-slit experiment makes it necessary to take the polarization of the
primary plane wave into account by separating the vectorial problem into two scalar
problems. However, in the far field and since looking at the intensity distribution
close to the forward direction the results of both these separate problems agree quite
well with the scalar result of the Fraunhofer diffraction (see Hönl et al. (1961)).
This will allow us to consider the polarization in a quite simple manner. Regarding
the above mentioned modification we would therefore get an intensity pattern on
the measurement screen in the far field behind the double-slit that corresponds with
the intensity pattern caused by a scalar plane wave just interacting with a single slit
of width a. This is due to the fact that the subfields behind the slits are disjoint.
According to (4.44) and (4.45), these subfields are given in the far field by

j 1.˛/i D f1.˛/
E0p
2

e ikR

R
� jyi D E0

e ikR

R
� j f1.˛/i (4.102)

and

j 2.˛/i D f2.˛/
E0p
2

e ikR

R
� jzi D E0

e ikR

R
� j f2.˛/i : (4.103)

Thus we get for the total field

j .˛/i D E0
e ikR

R
� .j f1.˛/i C j f2.˛/i/ D E0

e ikR

R
� j f .˛/i : (4.104)

The total angularly dependent intensity pattern (4.51) follows immediately from the
scalar product hf .˛/j f .˛/i, and if taking the orthonormality of the unit vectors jyi
and jzi into account.

In the next step, let us place an additional polarizing filter PF between the double-
slit and the measurement screen (see Fig. 4.10). If this filter is oriented with its
forward direction in parallel to the y-axis the intensity (4.51) is reduced to Is.˛/=2.
But we know also that only the part of the primary incident plane wave that was
traversing slit S1 is responsible for this intensity pattern. Similarly, if PF is oriented
with its forward direction in parallel to the z-axis, the same intensity pattern Is.˛/=2

is then produced by the part of the primary incident plane wave that was traversing
slit S2. In this way we have lost the characteristic interference pattern of the double-
slit. But the situation changes if we rotate filter PF by an arbitrary angle ˛p. To
describe the situation behind PF we can use the transformation of the field (4.55) if
rotating the coordinate system. In conjunction with (4.63) we get for the amplitude
functions

j f 0
1.˛/i D ika

2�
p
2

� sin�a

�a
� e � i�C � 	cos˛p � jy0i C sin ˛p � jz0i
 (4.105)
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and

j f 0
2.˛/i D ika

2�
p
2

� sin�a

�a
� e i�C � 	� sin ˛p � jy0i C cos˛p � jz0i
 : (4.106)

The superposition provides

j f 0.˛/i D ika

2�
p
2

� sin�a

�a
� �	cos˛p � e � i�C � sin ˛p � e i�C


 � jy0i

C 	
cos˛p � e i�C C sin ˛p � e � i�C


 � jz0i� : (4.107)

Regarding our experiment, from field (4.107) we need only the z 0-component since
it is in parallel with the forward direction of the filter PF. It is therefore given by

j fz 0.˛/i D ika

2�
p
2

� sin�a

�a
� 	cos˛p � e i�C C sin ˛p � e � i�C


 � jz0i : (4.108)

If choosing ˛p D 45ı this becomes

j fz 0.˛/i D ika

2�
� sin�a

�a
� cos�C � jz0i : (4.109)

Calculating the intensity from the scalar product gives

hfz 0.˛/j fz 0.˛/i D IS.˛/ � cos2 �C : (4.110)

This corresponds to the characteristic interference pattern (4.50) of the double-slit
with an intensity reduced to 1=4. With this specific orientation of the polarizing
filter PF we have “erased” the scattering behaviour of a single slit, so to speak. But
we can also observe another well-known effect. If choosing an angle ˛p D �45ı
instead of ˛p D 45ı of the polarizing filter PF we get for the intensity

hfz 0.˛/j fz 0.˛/i D IS.˛/ � sin2 �C D IS.˛/ � cos2
��
2

C �C


; (4.111)

i.e., a shift of �=2 of the characteristic interference pattern is observed.

4.3 Eigensolutions of the Three-Dimensional Helmholtz
Equation in Spherical Coordinates

In preparation for the scattering problem of a scalar plane wave on a spherical object
we have to become acquainted with the eigensolutions of the 3-dim. Helmholtz
equation and with some of their properties. The relations between the Cartesian and
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Table 4.1 Relations between
the unit vectors in Cartesian
and spherical coordinates

Ox Oy Oz
Or sin � cos 
 sin � sin
 cos �
O� cos � cos 
 cos � sin
 � sin �
O
 � sin
 cos 
 0

spherical coordinates are given by (3.165). The corresponding relations between
the unit vectors of both coordinate systems can be taken from Table 4.1. The
homogeneous Helmholtz equation reads

	r2 C k2


 .k; r; �; 
/ D 0 (4.112)

with the Laplace operator given by

r2 D 1

r2
@

@r

�
r2
@

@r

�
C 1

r2 sin �

@

@�

�
sin �

@

@�

�
C 1

r2 sin2 �

@2

@
2
(4.113)

in spherical coordinates. The boundary surface element is given by (4.15) if S in
Fig. 4.1 is the boundary surface of a sphere with radius r D a. The unit vector On is
in this case identical with the unit vector Or. Application of the Bernoulli ansatz

 .k; r/ D  .k; r; �; 
/ D R.r/ �‚.�/ �ˆ.
/ (4.114)

for the unknown function  .r; �; 
/ results in a separation of the Helmholtz
equation in spherical coordinates. Using (4.114) in (4.112), and if introducing the at
first arbitrary separation constants ˛ and ˇ converts the original Helmholtz equation
into the three ordinary differential equations

�
d2

dr2
C k2 � ˇ

r2

�
r � R.r/ D 0 (4.115)

�
1

sin �

d

d�

�
sin �

d

d�

�
C ˇ � ˛

sin2 �

�
‚.�/ D 0 (4.116)

�
d2

d
2
C ˛

�
ˆ.
/ D 0 : (4.117)

of second order. Each of these ordinary differential equations provides two linearly
independent solutions. But regarding the scattering problem we are only interested
in the following eigensolutions:

�l;n.k; r/ D jn.kr/ � Yl;n .�; 
/ (4.118)

'l;n.k; r/ D h.1/n .kr/ � Yl;n .�; 
/ (4.119)

�l;n.k; r/ D h.2/n .kr/ � Yl;n .�; 
/ : (4.120)
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Yl;n .�; 
/ are the spherical harmonics

Yl;n .�; 
/ WD
s
2n C 1

4�

.n � l/Š

.n C l/Š
� Pl

n .cos �/ eil
 (4.121)

normalized to unity. They obey the orthogonality relation

Z 2�

0

d

Z �

0

d� sin � Y�
l0 ;n0 .�; 
/ Yl;n .�; 
/ D ıll0ınn0 (4.122)

as well as the following relations:

Y �
l;n.�; 
/ D .�1/l � Y�l;n.�; 
/ (4.123)

and

Yl;n.� � �; 
 ˙ �/ D .�1/n � Yl;n.�; 
/ : (4.124)

Y �
l;n denotes the conjugate-complex of Yl;n. The completeness relation is given by

1X
nD0

nX
lD�n

Y�
l;n.�; 
/ � Yl;n.�

0; 
0/ D ı.cos � � cos � 0/ � ı.
 � 
0/ : (4.125)

Index n is restricted to the natural numbers n D 0; 1; 2; : : :1, and index l takes
the integer numbers l D �n;�n C 1; : : : ; n � 1; n. These indices are related to
the separation constants ˛ and ˇ by n.n C 1/ D ˇ and l2 D ˛. jn in (4.118),
h.1/n in (4.119), and h.2/n in (4.120) are the spherical Bessel functions, the spherical
Hankel functions of first kind, and the spherical Hankel functions of second kind,
respectively. All these functions are possible solutions of equation (4.115) and are
related to the corresponding functions with fractional orders according to

jn.kr/ D
r
�

2kr
� JnC1=2.kr/ (4.126)

h.1/n .kr/ D
r
�

2kr
� H.1/

nC1=2.kr/ (4.127)

h.2/n .kr/ D
r
�

2kr
� H.2/

nC1=2.kr/ : (4.128)

The functions Pl
n .cos �/ in (4.121) are the associated Legendre polynomials. They

form one of the two linearly independent solutions of the ordinary differential
equation (4.116). At the elevation angles � D 0 and � D � they fulfil the
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homogeneous von Neumann condition if l D 0 and the homogeneous Dirichlet
condition if l ¤ 0:

d

d�
Pl

n.1/ D d

d�
Pl

n.�1/ D 0 I l D 0 (4.129)

Pl
n.1/ D Pl

n.�1/ D 0 I l ¤ 0 : (4.130)

These functions are moreover orthogonal, i.e.,

Z �

0

d� sin � � Pl
n .cos �/Pl

n0 .cos �/ D 2

2n C 1

.n C l/Š

.n � l/Š
� ınn0 (4.131)

holds.

P �l
n .cos �/ D .�1/l � .n � l/Š

.n C l/Š
� Pl

n .cos �/ (4.132)

is the relation between the associated Legendre polynomials with positive and
negative index l. The associated Legendre polynomials may be calculated from the
conventional Legendre polynomials Pn.x/ by use of the relation

Pl
n.x/ D .�1/l � .1 � x2/l=2 � dlPn.x/

dxl
(4.133)

and with Pn.x/ given by

Pn.x/ D 1

2nnŠ

�
d

dx

�n

.x2 � 1/n : (4.134)

The functions eil
 are the solutions the ordinary differential equation (4.117). They
are periodic functions with respect to 2� ,

ˆ.
/ D ˆ.
 C 2�/ ; (4.135)

and comply with the orthogonality relation

Z 2�

0

d
eil
e�il0
 D 2�ıll0 : (4.136)

Regarding the scattering solution outside the spherical object we require the
fulfillment of Sommerfeld’s radiation condition (3.291). A closer look at the
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asymptotic behaviour

lim
r!1 jn.kr/ D 1

kr
� sin

h
kr � n�

2

i
(4.137)

lim
r!1 h.1/n .kr/ D .�i/nC1 � eikr

kr
(4.138)

lim
r!1 h.2/n .kr/ D .i/nC1 � e�ikr

kr
(4.139)

of the Bessel- and Hankel functions for large arguments reveals that only the Hankel
functions h.1/n of the first kind are in accordance with this radiation condition.
The functions 'l;n.r; �; 
/ of (4.119) are therefore called “radiating functions” or
“radiating solutions” of the Helmholtz equation. However, these functions possess
a singularity in the origin of the coordinate system. The functions �l;n.r; �; 
/
of (4.118) are the only functions which are regular in this point. The remaining
functions �l;n.r; �; 
/ in (4.120) are called the “incoming solutions”. Both types of
Hankel functions can be expressed by the combination

h.1/n .kr/ D jn.kr/ C iyn.kr/ (4.140)

h.2/n .kr/ D jn.kr/ � iyn.kr/ (4.141)

of the Bessel and Neumann functions. The Neumann functions yn.kr/ are also
possible solutions of the ordinary differential equation (4.115). The regular solu-
tions (4.118) can be described by a superposition of the radiating- and incoming
solution according to

�l;n.k; r/ D 1

2
� Œ'l;n.k; r/ C �l;n.k; r/� : (4.142)

If k in the Helmholtz equation is a real-valued parameter (and only this case
is of our interest here and related to nonabsorbing materials), then the Bessel-
and Neumann functions are also real-valued quantities. For later purposes we
additionally introduce the functions

Q'l;n.k; r/ WD .�1/l � '�l;n.k; r/ (4.143)

Q�l;n.k; r/ WD .�1/l � ��l;n.k; r/ : (4.144)

Q�l;n.k; r/ WD .�1/l � ��l;n.k; r/ ; (4.145)

where

Q�l;n.k; r/ D ��
l;n.k; r/ (4.146)

holds for a real-valued parameter k.
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Using these eigenfunctions will allow us to approximate a function  .k; r/ by
the finite series expansion

 .N/.k; r/ D
NX

nD0

nX
lD�n

a .N/l;n � 'l;n.k; r/ (4.147)

or by

 .N/.k; r/ D
NX

nD0

nX
lD�n

Qa .N/l;n � �l;n.k; r/ (4.148)

depending on whether the radiation condition or the regularity requirement must
be fulfilled by this function. Two examples of such an expansion are of special
importance for the scattering problem considered in what follows:

 0.k; r/ D E0 � eikr cos � (4.149)

represents a scalar plane wave E0 � eikz in spherical coordinates traveling along
the positive z-axis of the Cartesian coordinate system. This plane wave can be
approximated by the series expansion

 0.k; r/ � E0

NX
nD0

nX
lD�n

cl;n � �l;n.k; r/ (4.150)

with expansion coefficients cl;n given by

cl;n D ı0l � i n �
p
4�.2n C 1/ (4.151)

(see Sommerfeld (1949), for example). Please, note that these coefficients are final
(i.e., they are independent of the truncation parameter N), and that only l D 0

provides a contribution to this expansion. The second example is the bilinear
expansion

G.3/.r; r0/ � i k �
NX

nD0

nX
lD�n

8<
:

'l;n.k; r/ � Q�l;n.k; r0/ I r > r0

�l;n.k; r/ � Q'l;n.k; r0/ I r < r0 :
(4.152)

known for the free-space Green’s function (3.297) of the 3-dim. Helmholtz equation
(see Morse and Feshbach (1953), for example). For the sake of brevity let us
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introduce the shorter notation

G>.r; r0/ D i k �
NX

nD0

nX
lD�n

'l;n.k; r/ � Q�l;n.k; r0/ (4.153)

G<.r; r0/ D i k �
NX

nD0

nX
lD�n

�l;n.k; r/ � Q'l;n.k; r0/ (4.154)

for the upper and lower row of this bilinear expansion. A similar splitting of the
Green’s function was already applied in (3.117) and (3.121) in conjunction with the
d’Alembert solution on a fixed boundary.

Starting from the assumption that r < r0 holds we should be able to derive the
approximation (4.150) with expansion coefficients (4.151) by use of our pivotal
integral relation (4.28) and an appropriate source. In spherical coordinates (4.28)
reads

 0.k; r/ D
Z 1

0

.r0/2dr0
Z �

0

sin � 0d� 0
Z 2�

0

d
0 G<.r; r0/ � �.k; r0/ : (4.155)

Now, if using (4.154) and the source

�.k; r0/ D 2E0 � e�ikr0
q

r0
q

� ı0;l � ı� 0.� 0 � �/ � ı.r0 � r0
q/ (4.156)

we get

 0.k; r/ D i k E0 r0
q e�ikr0

q �
NX

nD0

p
4�.2n C 1/ � h.1/n .k r0

q/ � .�1/n � �0;n.k; r/ :
(4.157)

This source describes a unit source that is located on the negative z-axis since only
� 0 D � provides a nonvanishing contribution. Next, if increasing r0

q up to infinity
(i.e., if shifting the unit source along the negative z-axis toward the far field), the
asymptotic expression (4.138) can be used for the Hankel function h.1/n .k r0

q/. This
gives

 0.k; r/ D E0 �
NX

nD0

p
4�.2n C 1/ � i n � �0;n.k; r/ (4.158)

and corresponds indeed with (4.150)/(4.151).
It is sometimes more useful to write down the series expansions (4.147)

and (4.148) in a more compact form with only one summation index. This can be
accomplished with the index i (that must not be confused with the imaginary unit)
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Table 4.2 Relation between the combined summation index i and the original indices n and l

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 � � �
n 0 1 1 1 2 2 2 2 2 3 3 3 3 3 3 3 � � �
l 0 �1 0 1 �2 �1 0 1 2 �3 �2 �1 0 1 2 3 � � �

that combines the two indices n and l according to

i D n.n C 1/C l : (4.159)

Table 4.2 illustrates the relation (4.159) explicitly. Using this index we can
rewrite (4.147) and (4.148) into

 .N/.k; r/ D
NX

iD0
a .N/i � 'i.k; r/ (4.160)

and

 .N/.k; r/ D
NX

iD0
Qa .N/i � �i.k; r/ : (4.161)

The two indices n and l can conversely be recalculated from the relations

n.i/ D nint

�
1

2

�
�1C p

1C 4i

�

(4.162)

l.i/ D i � n.i/ � Œn.i/C 1� (4.163)

with nint.a/ being the integer number closest to the real number a. Equation (4.162)
can be inferred from the solution of (4.159) if l D 0. Next, if n.i/ has been
determined for a given i, then (4.163) provides the corresponding l.i/ in a unique
way.

And, finally, the following orthogonality relations for the eigensolutions
'i.a; �; 
/ and �i.a; �; 
/ on the surface of a sphere with radius r D a are of
importance for our purposes:

Z 2�

0

d

Z �

0

d�a2 sin � '�
i .a; �; 
/ � 'j.a; �; 
/ D a2 � c.';'/i � ıij (4.164)

Z 2�

0

d

Z �

0

d�a2 sin � '�
i .a; �; 
/ � �j.a; �; 
/ D a2 � c.';�/i � ıij (4.165)
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Z 2�

0

d

Z �

0

d�a2 sin � ��
i .a; �; 
/ � �j.a; �; 
/ D a2 � c.�;�/i � ıij (4.166)

Z 2�

0

d

Z �

0

d�a2 sin � ��
i .a; �; 
/ � 'j.a; �; 
/ D a2 � c.�;'/i � ıij : (4.167)

The normalization constants ci therein are given by the expressions

c.';'/i D
�

h.1/n.i/.ka/

� � h.1/n.i/.ka/ (4.168)

c.';�/i D
�

h.1/n.i/.ka/

� � jn.i/.ka/ (4.169)

c.�;�/i D j�n.i/.ka/ � jn.i/.ka/ (4.170)

c.�;'/i D j�n.i/.ka/ � h.1/n.i/.ka/ : (4.171)

4.4 Scattering on a Sphere

4.4.1 Green’s Function, Interaction Matrix, and T-Matrix

Now we are prepared to solve the following scattering problem:  denotes the total
field in region � outside a spherical obstacle with boundary surface S. Due to the
linearity of the Helmholtz equation the total field is represented by the sum of a
primary incident field  0 and a scattered field  s, as given in Eq. (4.3). The latter is
generated by the interaction of the primary incident field with the spherical obstacle.
The origin of the coordinate system is assumed to be identical with the center of the
spherical scatterer. The primary incident field is a solution of the inhomogeneous
Helmholtz equation (4.1) with �.r/ being an impressed source that generates a
plane wave. Regarding the total field we require the fulfillment of the homogeneous
Dirichlet condition (4.7) at the spherical surface S. The inhomogeneous Dirichlet
condition

 s.r/ D � 0.r/ I r 2 S (4.172)

may be used alternatively for the scattered field which is a solution of the homo-
geneous Helmholtz equation subject to the radiation condition. If the impressed
source of the primary incident field is located at a finite distance from the scatterer,
then the radiation condition must be required for the total field. This scattering
problem is uniquely solvable. For example, if  0 is known we can first use the
integral equation (4.19) to determine the induced surface current js. The total field
outside the sphere may then be calculated from (4.20). But we will choose a different
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approach in what follows by relating a Green’s function—let us denote it with G�—
to this scattering problem. G�.r; r0/ is only defined in � . It is a solution of the
inhomogeneous Helmholtz equation

.r2 C k2/ G�.r; r0/ D � ı.r � r0/ : (4.173)

subject to the radiation condition (3.291) and the homogeneous Dirichlet condition

G�.r; r0/ D 0 I r 2 S (4.174)

at the surface of the spherical scatterer. Using this Green’s function together with the
scattering problem defined before in (4.5) results once more in our pivotal integral
relation

 .r/ D
Z
�

G�.r; r0/ � �.r0/ dV.r0/ (4.175)

for the total field in region � outside the spherical scatterer. To determine G� we
choose the following ansatz:

G�.r; r0/ D G.3/.r; r0/ C Gs.r; r0/ D G.3/.r; r0/ CI
S

G>.r; Nr/ � WS.Nr; Qr/ � G<.Qr; r0/ dS.Nr/ dS.Qr/ : (4.176)

The second term on the right-hand side represents the scattering contribution and
should be perceived as the defining equation for the so far unknown “interaction
operator” WS. G.3/, on the other hand, represents the free-space Green’s func-
tion (3.297). The Green’s functions G> and G< in the surface integral are the
respective contributions of the free-space Green’s function according to (4.152)–
(4.154). The upper symbols “>” and “<” indicate that r > Nr and Qr < r0 hold
generally in � . Using (4.153) and (4.154) in ansatz (4.176) gives

G.N/
� .r; r0/ D G.3/.r; r0/ C i k �

NX
i;kD0

ŒWS�i;k � 'i.k; r/ � Q'k.k; r0/ ; (4.177)

where ŒWS�i;k are the still unknown matrix elements of the interaction operator
defined by the surface integral

ŒWS�i;k WD i k �
I

S

Q�i.k; Nr/ � WS.Nr; Qr/ � �k.k; Qr/ dS.Nr/ dS.Qr/ (4.178)

(please, note again that the imaginary unit “i” and wavenumber “k” in front of
the integral must not be confused with the indices “i” and “k” of the summation).
The thus approximated Green’s function G.N/

� is a solution of the inhomogeneous
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Helmholtz equation (4.173) subject to Sommerfeld’s radiation condition. The
unknown matrix elements of the interaction operator can now be determined by
application of the additional condition (4.174). Using (4.177) in (4.174), shifting
the observation point r toward the spherical surface S, and if replacing w.l.o.g. G.3/

in (4.177) by G<.r; r0/ results in the equation

�
NX

i;kD0
ŒWS�i;k � 'i.a; �; 
/ � Q'k.k; r0/ D

NX
kD0

�k.a; �; 
/ � Q'k.k; r0/ : (4.179)

This equation describes the interaction of an at first arbitrary, primary incident
field  0 with an ideal metallic or acoustically soft sphere on the level of Green’s
functions.

The countably infinite number of functions �i.a; �; 
/ and 'i.a; �; 
/ form an
orthogonal and even a complete system in a normed function space with a scalar
product defined by

hf jgi WD
Z 2�

0

d

Z �

0

d� a2 sin � f �.a; �; 
/ � g.a; �; 
/ : (4.180)

f .a; �; 
/ and g.a; �; 
/ are any two functions on the spherical surface. To
simplify the calculation of the matrix elements of the interaction operator
from (4.179) let us make the following arrangement: E�.a; �; 
/ denotes a .N C 1/-
dimensional vector with functions �i.a; �; 
/, i D 0; � � � ;N as its components.
Correspondingly, E'.a; �; 
/ represents a .N C 1/-dimensional vector with functions
'i.a; �; 
/; i D 0; � � � ;N as its components. Using the matrix-vector notation,
expression “�PN

iD0 ŒWS�i;k � 'i.a; �; 
/” on the left-hand side of (4.179) can then
be rewritten into

Ef tp.a; �; 
/ D �
NX

iD0
ŒWS�i;k � 'i.a; �; 
/ D � W tp

S � E' tp.a; �; 
/ (4.181)

or

Ef .a; �; 
/ D � E'.a; �; 
/ � WS (4.182)

with WS representing the interaction matrix with elements ŒWS�i;k. Dyadic mul-

tiplication of this expression from the left by the column vector E��.a; �; 
/ and
subsequent integration according to (4.180) results in

WS D � A�1 � B ; (4.183)
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where the elements of the two matrices A and B are given by the scalar products

ŒA�i;k D h�i.a; �; 
/j'k.a; �; 
/i (4.184)

ŒB�i;k D h�i.a; �; 
/j fk.a; �; 
/i : (4.185)

Equation (4.179) is obviously fulfilled if

Ef .a; �; 
/ D E�.a; �; 
/ : (4.186)

Performing the corresponding replacement in matrix B we then have

ŒB�i;k D h�i.a; �; 
/j�k.a; �; 
/i : (4.187)

Since matrix A is already known we are now able to calculate the interaction matrix.
Taking the orthogonality relations (4.166) and (4.167) into account we get

ŒA�i;k D ıi;k � 1
a2

� j �
n.i/.ka/ � h.1/n.i/.ka/ (4.188)

and

ŒB�i;k D ıi;k � 1
a2

� j �
n.i/.ka/ � jn.i/.ka/ : (4.189)

And, finally, we end up with the Green’s function

G.N/
� .r; r0/ D G.3/.r; r0/ � i k �

NX
iD0

jn.i/.ka/

h.1/n.i/.ka/
� 'i.k; r/ � Q'i.k; r0/ : (4.190)

Please, note again that we have to differ between the imaginary unit “i” in front of
the sum and the combined summation index “i” !

To test Reciprocity if interchanging r and r0 in (4.190) it is sufficient to look at the
scattering part G.N/

s .r; r0/ on the right-hand side. Regarding the free-space Green’s
function G.3/.r; r0/ we know already the fulfillment of this condition. To this end,
let us resolve the summation on the right-hand side of (4.190) according to

G.N/
s .r; r0/ D � i k �

nX
lD�n

nmaxX
nD0

jn.ka/

h.1/n .ka/
� 'l;n.k; r/ � .�1/l � '�l;n.k; r0/ (4.191)
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by taking (4.143) into account. We then replace the summation index l by �l. This
is nothing but a rearrangement of the initial summation. This gives

G.N/
s .r; r0/ D � i k �

nX
lD�n

nmaxX
nD0

jn.ka/

h.1/n .ka/
� '�l;n.k; r/ � .�1/l � 'l;n.k; r0/

D G.N/
s .r0; r/ (4.192)

which proves Reciprocity. Regarding scattering on a spherical obstacle Reciprocity
holds obviously for any single expansion term in the derived approximation of the
corresponding Green’s function. This is a consequence of the fact that the interaction
matrix WS is a diagonal matrix for this special geometry. For plane wave scattering
on a spherical scatterer it is clear from the very beginning that interchanging source
and observation point does not results in a different scattering configuration. But
this becomes less obvious for a nonspherical geometry of the scatterer. In this case
the interaction matrix WS becomes a full matrix, and Reciprocity can be tested
only numerically. A possible test configuration for a spheroidal particle is shown
in Fig. 4.11. Similar configurations represent appropriate criteria to estimate the
accuracy of scattering results for a nonspherical scatterer obtained with a certain
numerical method, as demonstrated with several examples in Rother and Kahnert
(2013), especially in Chap. 8 therein.

z

x

θs = 90o

ψ0

z

x

θs = 90o

ψ0

(a) (b)

Fig. 4.11 Configuration of a numerical or experimental test of the Reciprocity if a spheroidal
scatterer in two different orientations is considered. Both orientations must provide the same
differential scattering cross-section at a scattering angle of �s D 90ı
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Using (4.190) in (4.175) provides the scattering solution in a form that represents
an alternative to expression (4.20), as already mentioned subsequent to the latter. It
makes therefore sense to consider (4.20) as the “source picture” and (4.175)/(4.190)
as the “interaction picture” of scattering. Although both pictures should provide
identical results they may differ considerably in their numerical realization. A more
detailed consideration of the differences between both pictures can again be found in
Rother and Kahnert (2013), Chap. 5 therein. Here we will mention only one aspect
in this context. Regarding the above discussed interaction formulation there exist a
straightforward way to treat scattering on obstacles with only a slight deviation from
a spherical geometry.

To this end, let us go back to expression (4.183) but before its multiplication by
A�1. From (4.182) it follows

A � WS D � B : (4.193)

In case of a nonspherical scattering geometry both matrices A and B are no longer
diagonal- but full matrices. The necessary inversion of matrix A can become a
numerically challenging task. However, if the geometry deviates only slightly from
a nonspherical one the following iteration scheme can be applied with benefit: First
we calculate the elements of both matrices according to (4.184) and (4.185) but
now with surface integrals over the nonspherical surface of the scatterer. Next, we
calculate the diagonal matrix A0 of the corresponding volume-equivalent spherical
scatterer. Equation (4.193) can then be rewritten into

.AD C A0/ � WS D � B (4.194)

with the difference matrix AD given by

AD D A � A0 : (4.195)

This can be treated further to give

A0 � WS D � B � AD � WS ; (4.196)

and, after multiplication by A�1
0 ,

WS D � A�1
0 � B � A�1

0 � AD � WS : (4.197)

This last equation looks like the algebraic version of a Lippmann-Schwinger
equation for the interaction matrix and can be solved iteratively by inversion of
the diagonal matrix A0 only. But this inversion produces no additional difficulties.

W .0/
S D � A�1

0 � B (4.198)
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is its lowest, and

W .1/
S D � A�1

0 � B � A�1
0 � AD � W .0/

S (4.199)

its first iteration.
Another possibility to derive a Lippmann-Schwinger equation which is more in

agreement with that one considered in the second chapter of this book is offered
with Green’s theorem (4.2) if used with

 .r/ D G�.r; r0/ (4.200)

and the free-space Green’s function


.r/ D G.3/.r; r0/ : (4.201)

This gives

G�.r; r0/ D G.3/.r; r0/ C
I

S
G.3/.r; Nr/ � @G�.r; Nr/

@ONn0 dS.Nr/ (4.202)

if taking the boundary condition (4.174) and the Reciprocity into account. G� in the
surface integral over the nonspherical surface of the scatterer on the right-hand side
can again be replaced in a first iteration by the free-space Green’s function G.3/.

Next we want to demonstrate the strong relation between the interaction matrix
WS and a T-matrix that can be introduced to describe the basis transformation of the
primary incident plane wave. For this purpose let us rewrite the expansion (4.150)
with coefficients (4.151) once again but in a shorter notation, and if restricted to
the surface of a spherical scatterer with radius r D a only. This restriction is due
to the fact that the regular and radiating eigenfunctions of the Helmholtz equation
form a basis on this surface. The shorter notation is obtained by using the scalar
multiplication of the two “vectors” Ec and E� to represent the expansion of the plane
wave,

 0.a; �; 
/ D E0 � Ec � E� tp.a; �; 
/ : (4.203)

The components of Ec are just the expansion coefficients according to (4.151). In a
further step we want to express this expansion by the new basis functions 'i.a; �; 
/
which form the components of E'. The transformation between these basis functions
may be expressed by

E�.a; �; 
/ D E'.a; �; 
/ � T ; (4.204)
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thus introducing the corresponding T-matrix. Looking at (4.182) and (4.186), we
see that this matrix is identical with the negative interaction matrix,

T D � WS : (4.205)

The expansion of the primary incident plane wave on the spherical surface in terms
of the radiating eigenfunctions reads therefore

 0.a; �; 
/ D E0 � Ed � E' tp.a; �; 
/ ; (4.206)

where the new expansion coefficients di—the components of vector Ed—are calcu-
lated from the old expansion coefficients ci according to

Ed tp D T � Ec tp : (4.207)

The T-matrix transforms once again the “old” expansion coefficients ci into the
“new” expansion coefficients di. It is of some interest here since we are now able
to present immediately the scattering solution. Since condition (4.172) must hold at
the surface of the scatterer we have at first

 s.a; �; 
/ D � E0 � Ed � E' tp.a; �; 
/ (4.208)

for the scattered field at this surface. However, that this expansion can be continued
into the outer region � of the spherical scatterer, i.e., that

 s.k; r/ D � E0 � Ed � E' tp.k; r/ I r 2 � (4.209)

holds, was proven in Rother and Kahnert (2013). Relation (4.205) emphasizes once
again the equivalence of a basis transformation and an interaction process.

4.4.2 S-Matrix

The S-matrix or “scattering matrix” was originally and independently introduced
by (Wheeler 1937) and (Heisenberg 1943) in Quantum Mechanics. It was utilized
only later on also in the theory of electromagnetic wave scattering (Saxon 1955).
The unitarity property of this matrix is of our special interest in what follows since
it can be related to the energy conservation of scattering processes. In so doing, let
us go back to equation (4.204) where we replace E�.a; �; 
/ by relation (4.142) and
the T-matrix by the negative interaction matrix WS. Thus we get

E�.a; �; 
/ D � E'.a; �; 
/ � 2 � E'.a; �; 
/ � WS (4.210)
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or

E�.a; �; 
/ D � E'.a; �; 
/ � S (4.211)

if introducing the S-matrix by

S WD E C 2 � WS : (4.212)

In contrast to the T-matrix, the S-matrix relates the radiating and incoming
eigensolutions at the spherical surface. With the definition of the scalar product

	Eu; Ev

S

WD
NX

iD0
hui.a; �; 
/jvi.a; �; 
/i ; (4.213)

where h� j �i is defined according to (4.180) at the spherical surface, and if assuming
a real-valued k we see that

	 E�; E�

S

D 	 E'; E'

S
: (4.214)

This is a consequence of (4.140) and (4.141). Using relation (4.211) on the left-hand
side of this identity provides

	 E'; E' � S� � S



S
D 	 E'; E'


S
: (4.215)

This proves the unitarity

S� � S D E (4.216)

of the S-matrix for a real-valued parameter k. Please, note that S� represents the
conjugate-complex and transpose of matrix S.

The unitarity property of the S-matrix for a real-valued parameter k is at first
a mere mathematical property. But exactly this mathematical property can be used
with benefit to express our physical experience of energy conservation regarding
scattering processes on nonabsorbing obstacles if imbedded in a nonabsorbing
environment. The energy conservation is usually expressed by the condition

I
S1

�
@ �.r/
@r

�  .r/ � @ .r/
@r

�  �.r/
�

dS.r/ D 0 (4.217)

that must hold for the total field  D  0 C  s in the far field (see Morse and
Feshbach (1953), Chap. 9 therein, for example). Regarding our initially formulated
scattering problem this condition states that the energy flux produced by the incident
and scattered field through the surface S1 in the far field is balanced if there are
no sources and no absorption in region � . The assumption of no sources in � in
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connection with a plane wave as the primary incident field results in a somewhat
strange situation. We have already discussed how an impressed source must be
choosen within the Green’s function formalism to generate such a plane wave at the
location of the scatterer. The impressed source (4.29) must be located in the far field
of the scatterer. However, in order to avoid a conflict with (4.217) and the necessary
assumption of no sources in � (i.e., no sources between the scatterer surface S and
the surface S1 of the far field) this impressed source must yet be shifted behind the
far field—whatever this means! This situation emphasizes once again the strange
and quite artificial nature of the object “plane wave” if not considered as a priori
existing. It is hard to understand, on the other hand, that the question of energy
conservation should be restricted to the energy flux through S1 in the far field. One
may also expect the conservation of energy across the surface Sa for the scattering
configuration depicted in Fig. 4.12 which is a more realistic one and not restricted to
a primary incident plane wave. And, moreover, the question of energy conservation
should be decoupled from the nature of the source and solely related to the Green’s
function.

To find an answer to these questions we define the following functional at the
boundary surface Sa with its outward directed unit normal vector Ona:

f f .r/; g.r/gSa
WD

I
Sa

�
@f �.r/
@Ona

� g.r/ � @g.r/
@Ona

� f �.r/
�

dS.r/ : (4.218)

This definition is choosen in close analogy to (4.217). Let us further assume for
simplicity that Sa is the surface of a sphere enclosing the scatterer. If applied to the

Fig. 4.12 Scattering
configuration to prove energy
conservation

S∞

S

k,Γ

scatterer

⊗
ρ(r)

Sa
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eigensolutions of the Helmholtz equation we obtain for a real-valued parameter k

˚
'i.k; r/; 'j.k; r/

�
Sa

D ˚
�i.k; r/; �j.k; r/

�
Sa

D
˚
�i.k; r/; 'j.k; r/

�
Sa

D 0 (4.219)

if i 6D j, and

f�i.k; r/; 'i.k; r/gSa
D f'i.k; r/; �i.k; r/gSa

D 0 (4.220)

as well as

f�i.k; r/; �i.k; r/gSa
D � f'i.k; r/; 'i.k; r/gSa

D c (4.221)

for all i D 0; � � � ;N. c in the last expression is a constant that does not depend on
the index “i”. These identities can be proven by application of Green’s theorem in
the region enclosed by Sa and S1, and if taking the far field behaviour of the Hankel
functions and their orthogonality relation on a spherical surface into account. But in
contrast to (4.2) the additional surface integral over the surface S1 in the far field
must now be considered since the radiation condition does not apply to some of
these functions or to some of the conjugate-complex functions! The analysis, even
if not complicate, is quite tedious for which reason we leave it to the interested
reader to practice Green’s theorem. Alternatively, one may look in our book (Rother
and Kahnert 2013). Now, let us go back to the Green’s function (4.177) with the
matrix elements of the interaction matrix assumed to be known. Assuming moreover
that r < r0 always holds (and exactly this situation is required to prove energy
conservation), and if taking (4.142) and (4.212) into account provides

G .N/
� .r; r0/ D i k �

NX
i;kD0

1

2
� ˚ıi;k � �i.k; r/ C ŒS�i;k � 'i.k; r/

� � Q'k.k; r0/ : (4.222)

ŒS�i;k therein are the corresponding matrix elements of the S-matrix according
to (4.212). Employing the shorter matrix-vector notation this approximation reads

G .N/
� .r; r0/ D i k

2
� � E�.k; r/ � E C E'.k; r/ � S

� � EQ' tp
.k; r0/ : (4.223)

It can be used in the functional (4.218) since r < r0 always holds at the scatterer
surface. Then, from (4.219)–(4.221) we get

n
G .N/
� .r; r0/;G .N/

� .r; r0/
o

Sa

D k2 c

4

NX
i;k;qD0

�
ıi;k � ıi;q �

�
S ��

i;k � ŒS�i;q
i

� Q' �
k .k; r

0/ � Q'q.k0; r0/ (4.224)
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or

n
G .N/
� .r; r0/;G .N/

� .r; r0/
o

Sa

D k2 c

4
� EQ' �

.k; r0/ � �E � S� � S
� � EQ' tp

.k; r0/ (4.225)

if using again the shorter matrix-vector notation. Since the absence of absorption is
characterized by a real-valued parameter k

n
G .N/
� .r; r0/;G .N/

� .r; r0/
o

Sa

D 0 (4.226)

follows from the unitarity (4.216) of the S-matrix. This expresses energy conser-
vation with respect to the closed boundary surface Sa. The interaction matrix WS

is identical zero if no scatterer exists. G .N/
� .r; r0/ becomes then identical with the

free-space Green’s function G.3/.r; r0/, and we have S D E.

˚
G<.r; r0/;G<.r; r0/

�
Sa

D 0 (4.227)

holds therefore for the part G< of the free-space Green’s function as long as the
primary impressed source is located outside the region enclosed by Sa. And, finally,
since the r- and r0-dependence are decoupled in the considered approximation of
the Green’s function the same expressions of energy conservation apply to the
primary incident field  0.k; r/ and the total field  .k; r/. It should be also noted
that the spherical geometry of the scatterer was not a precondition for the derivation
of (4.226).

4.4.3 Scattering Phase and Optical Theorem

We will now turn our attention toward the scattered field of the initially formulated
scattering problem on an ideal metallic or acoustically soft sphere if the impressed
source of the primary incident field is given by (4.156). It is moreover assumed that
the location r0

q of this source is shifted on the z-axis to �1 toward the far field. This
source, since applied to G< of the free-space Green’s function on the right-hand
side of (4.190), generates the plane wave (4.158) as the primary incident field  0.
On the other hand, application of this source to the scattering part of (4.190) (that is
the second part on the right-hand side of this equation) results in the approximation

 .N/s .k; r/ D � E0 �
NX

nD0

jn.ka/

h.1/n .ka/
� .2n C 1/ � i n � Pn.cos �/ � h.1/n .kr/ (4.228)

for the scattered field  s. Please, note that the summation index “n” is not the com-
bined summation index, due to the ı0;l term in (4.156). The term “�jn.ka/=h.1/n .ka/”
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are just the matrix elements of the diagonal interaction matrix WS. Taking rela-
tion (4.212) between the WS—and S-matrix into account, and since

jn.ka/ D 1

2
� �h.1/n .ka/ C h.2/n .ka/

�
(4.229)

follows from (4.140) and (4.141) we may write

 .N/s .k; r/ D E0 �
NX

nD0

.2n C 1/

2
.ŒS�n � 1/ � i n � Pn.cos �/ � h.1/n .kr/ (4.230)

instead of (4.228).

ŒS�n D � h.2/n .ka/

h.1/n .ka/
(4.231)

are the diagonal elements of the S-matrix. We choose E0 D 1 for simplicity and
denote the product ka of wave number and radius r D a of the sphere with ˇ. ˇ is
an important parameter in scattering theory called the “size parameter”. It describes
the ratio of a characteristic dimension of the scatterer and the wave length of the
primary incident plane wave. The elements of the S-matrix can be expressed as pure
phase terms. Using (4.140) and (4.141) it follows

ŒS�n D e 2 i ın (4.232)

with ın being the real-valued scattering phase given by

tan ın D jn.ˇ/

yn.ˇ/
(4.233)

(just a hint: use e 2iın D e iın=e �iın in (4.231) in order to derive this relation!). Instead
of (4.230) we then may write

 .N/s .k; r/ D
NX

nD0
.2n C 1/ � i nC1 � e i ın � sin ın � Pn.cos �/ � h.1/n .kr/ : (4.234)

If shifting the observation point r into the far field

lim
r!1

�
 .N/s .k; r/

� D f .�/ � e ikr

r
(4.235)
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follows from (4.138), where

f .�/ D 1

k
�

NX
nD0

.2n C 1/ � e i ın � sin ın � Pn.cos �/ (4.236)

represents the scattering amplitude function.
To get a clearer understanding of the importance of the scattering phase ın we

decompose the primary incident plane wave (4.158) into

 
.N/
0 .k; r/ D  

.i;N/
0 .k; r/ C  

.r;N/
0 .k; r/ ; (4.237)

where

 
.i;N/
0 .k; r/ D

NX
nD0

.2n C 1/

2
� e in�=2 � Pn.cos �/ � h.2/n .kr/ (4.238)

is the incoming part. On the other hand,

 
.r;N/
0 .k; r/ D

NX
nD0

.2n C 1/

2
� e in�=2 � Pn.cos �/ � h.1/n .kr/ (4.239)

represents the outgoing- or radiating part. (4.118) and (4.229) as well as identity
i n D e in�=2 was used for this decomposition. If we add the radiating part (4.239) of
the incident plane wave to the scattered field (4.234) we thus get the radiating part
of the total field,

 .r;N/.k; r/ D
NX

nD0

.2n C 1/

2
� e i.n�=2C 2 ın/ � Pn.cos �/ � h.1/n .kr/ : (4.240)

It differs from the radiating part of the primary incident plane wave by the scattering
phase term 2 ın.

Whereas the differential scattering cross-section is given by the square of the
scattering amplitude function (4.236) in the far field, the total scattering cross-
section �tot is defined by the solid angle integral over this quantity, i.e., by

�tot WD
Z

f �.�/ � f .�/ � sin � d� d
 : (4.241)

Due to the orthogonality relation (4.131) of the Legendre polynomials this gives

�tot D 4 �

k2
�

NX
nD0

.2n C 1/ � sin2ın : (4.242)
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On the other hand, if � D 0ı is choosen in (4.236) (this corresponds to the forward
direction of the incident plane wave) and since Pn.1/ D 1, we have

Imff .0/g D 1

k
�

NX
nD0

.2n C 1/ � sin2ın : (4.243)

Comparing this with (4.242) provides the well-known “optical theorem”

�tot D 4 �

k
� Imff .0/g (4.244)

we mentioned already in conjunction with the double-slit experiment. The above
given derivation of this theorem is restricted to a spherical scattering geometry.
However, a more general derivation that avoids this restriction can be found, for
example, in Morse and Feshbach (1953) for the scalar case, and in Saxon (1955)
and Rother and Kahnert (2013) for the case of electromagnetic wave scattering.

4.4.4 Extinction Paradox

Which basic approach can be used to solve a certain scattering problem is mainly
dependent on the above introduced size parameter ˇ. Regarding electromagnetic
wave scattering, and if the dimension of the scatterer is small compared to the
wavelength of the primary incident plane wave—this corresponds to a small size
parameter ˇ � 1—the quite simple Rayleigh approximation that is characterized
by the scattering behaviour of a dipole can be applied with benefit. But this
approximation is less sensitive to the geometry of the scatterer. In other words,
looking at the resulting differential scattering cross-sections provides only little
information about its geometry. The situation changes if ˇ > 1. Now we have
to solve the Helmholtz equation without any physical simplifications, as it was
discussed so far in this chapter. Due to the necessary application of the boundary
condition at the scatterer surface the geometry of the scatterer has an important
influence on its scattering behaviour. However, the Rayleigh approximation is
contained as a limiting situation in this rigorous approach. The situation changes
again for very large size parameters, i.e., if the dimension of the scatterer is very
large compared to the wavelength of the incident plane wave. One possible approach
is the Geometric Optics approximation that neglects diffraction since replacing the
incoming plane wave by a bundle of noninteracting rays which propagate according
to the laws of transmission and reflection. But even if very large size parameters are
considered the diffraction effects are of importance in some situations and result in
essential (and measurable!) differences in the scattering behaviour if compared to
the Geometric Optics approach. This will be demonstrated in what follows with the
so-called “extinction paradox”.
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Starting point is the far field approximation (4.235) of the scattered field with the
scattering amplitude function (4.236) rewritten into

f .ˇ; �/ D 1

2 i k
�

NX
nD0

.2n C 1/ � .ŒS.ˇ/�n � 1/ � Pn.cos �/ (4.245)

by use of the matrix elements (4.232) of the S-matrix. Increasing the size parameter
ˇ makes it necessary to take an increasing number of expansion terms in this
approximation into account. It was shown by Nussenzveig in an impressive way that
the resulting problems for very large size parameters can be bypassed by using the
Watson transformation or Poisson’s summation formula (see Nussenzveig (1965)).
This allows one to derive simple analytical expressions in this limiting situation.
However, these simple analytical expressions are obtained only by walking the long
and bumpy road through the analytical landscape of complex analysis. This is one of
the reasons why this method has not been gained much attention. The fact that our
recent computational possibilities and numerical procedures allow an easy treatment
of (4.245) even for size parameters of ˇ D 20000 and beyond may be another
reason. But in what follows we will go back to the method of Nussenzveig and
discuss—not in detail but the two essential steps for very large size parameters—
the derivation of the extinction paradox. Compared to the brut force approach of a
numerical computation this analysis has the advantage of revealing the differences
between wave- and ray optics and the underlying physics much more clearly.

Due to (4.127) and (4.128), we first note that we may write

ŒS�n D � H.2/

nC1=2.ˇ/

H.1/

nC1=2.ˇ/
(4.246)

instead of (4.231). Application of Poisson’s summation formula

1X
nD0

f .n C 1=2/ D
1X

mD�1
.�1/m

Z 1

0

f .�/ � e 2im�� d� (4.247)

to (4.245) results in

f .ˇ; �/ D
1X

mD�1
.�1/m

Z 1

0

f .�; ˇ/ � P��1=2.cos �/ � e 2im�� � � d� ; (4.248)

where

f .�; ˇ/ D i

k
� Œ1 � S.�; ˇ/� (4.249)
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and

S.�; ˇ/ D � H.2/

� .ˇ/

H.1/

� .ˇ/
: (4.250)

For our purpose, the evaluation of the integral requires a detailed consideration of
its integrand in the complex �-plane at large size parameters ˇ. To this end we have
to take note of the following problem that has a major impact on the analysis: The
scattering angle � is in the range of Œ0; ��. But the Legendre functions P�.cos �/ are
singular if � D � , and the Legendre functions P�.� cos �/ are singular if � D 0.
Only for nonnegative and integer numbers of �we obtain the conventional Legendre
polynomials which are nonsingular in � D 0; � . As it was shown by Nussenzveig,
it is advantageous to consider the two regions

• near forward direction: � � ˇ �1=3
• � < ˇ �1=3 � �

with respect to the scattering angle � separately. Equations (4.248)–(4.250) can be
used in the near forward region. In the other region we have to make use of the
identity

P�.cos �/ D Q .1/

� .cos �/ C Q .2/

� .cos �/ ; (4.251)

where

Q .1;2/

� .cos �/ D 1

2
�
�

P�.cos �/˙ 2i

�
Q�.cos �/

�
: (4.252)

The upper or lower sign in front of the second term in the square brackets on the
right-hand side applies if Q .1/

� or Q .2/

� is considered. Beside P�, Q� represents a
second linear independent solution of (4.116). Let us discuss the near forward region
first.

By means of an ingenious (and breathtaking, according to my mind) manipula-
tion Nussenzveig was able to split (4.248) into contributions of different parts. In the
far field and if � ! 0 the largest of these contributions agrees with the well-known
Fraunhofer diffraction of a circular aperture. The other parts describe the transition
into the so-called Fock region and result in an expansion in terms of .1=ˇ/˛; ˛ > 0.
But since it is our goal to calculate the total scattering cross-section by use of the
optical theorem (4.244), it is sufficient to look at the Fraunhofer contribution only.
This results from (4.248) if only m D 0 is considered and if S.�; ˇ/ is neglected,
i.e., from

f .ˇ >> 1; � ! 0/ D i

k

Z ˇ

0

P��1=2.cos �/ � � d� : (4.253)
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Substituting x D � � and if taking the expansion

P��1=2.cos �/ �
�

�

sin �

� 1=2
� J0.2�/ C � � � (4.254)

into account (see Nussenzveig (1965), Eq. (C.11) therein) gives

f .ˇ >> 1; � ! 0/ D i

k
�
�

�

sin �

� 1=2

� 1
�2

�
Z ˇ �

0

x � J0.x/ dx : (4.255)

From

Z b

a
x � nC1 � Jn.x/ dx D � �

x � nC1 � Jn�1.x/
�b

a ; (4.256)

(as can be proven by means of integration by parts) and identity

J�n.x/ D .�1/n � Jn.x/ (4.257)

it follows

f .ˇ >> 1; � ! 0/ D i � ˇ a �
�

�

sin �

� 1=2

� J1.ˇ �/

ˇ �
: (4.258)

This results in the Fraunhofer diffraction of a circular aperture for very small
scattering angles � and if sin � is correspondingly approximated by � . Finally, from
L’Hospital’s rule we get for the scattering amplitude function in the limit � D 0

f .ˇ >> 1; � D 0/ D i k a2

2
(4.259)

(just to remember:ˇ D ka). Using this result in the optical theorem (4.244) provides
the total scattering cross-section

�tot D 2 � a2 : (4.260)

This is twice the geometrical cross-section of the circular aperture with radius r D a
one would get from the Geometric Optics approach. This approach obviously fails
in the near forward direction even at very large size parameters.

The contribution from the second region, on the other hand, can in fact be iden-
tified with the Geometric Optics result if very large size parameters are considered.
This was also demonstrated by Nussenzveig. The corresponding contribution results
again only from the term m D 0 of (4.248), from relation (4.251) if taking only
Q .1/

� into account, and, moreover, if only the contribution S.�; ˇ/ of the scattering



198 4 Green’s Functions and Plane Wave Scattering

amplitude function f .�; ˇ/ is considered. We thus get

fr.ˇ; �/ D � i

k

Z 1

0

S.�; ˇ/ � Q .1/

��1=2.cos �/ � � d� : (4.261)

The estimation of this integral by use of the stationary phase approximation at the
dominant point

N� D ˇ � cos
�

2
(4.262)

on the positive and real-valued �-axis requires a considerable analytical effort
regarding the deformation of the path of integration in the complex �-plane and
the behaviour of Bessel’s functions at infinity. We do not want to go into the details
of this sophisticated analysis performed by Nussenzveig. The final result is given by

fr.ˇ; �/ D � a

2
� e � 2 iˇ sin �

2 : (4.263)

The subindex “r” indicates that this represents the reflective part of the solution
in the far field of this region. The differential scattering cross-section d�=d	—the
square of the scattering amplitude function—reads

d�

d	
D a2

4
(4.264)

and is identical with expression (2.393) that was already derived in Chap. 2 for
particle scattering on a rigid sphere. The dominant point (4.262) can directly be
compared to the impact parameter (2.391). The different behaviour for large size
parameters in the two regions can also be seen from Fig. 4.13. On the one hand,
there is the nearly constant part from the backward direction up to the near forward
direction that can be related to reflection only. The shift of this contribution toward
the forward direction for an increasing size parameter ˇ can also be observed! The
strong increase of the contribution of the other part near and in forward direction is
responsible for the doubling of the total cross section and cannot be explained by
the Geometric Optics approach.

Exercise: Development of a computer program for the scattering amplitude
function that results from (4.228) and the far field approximation (4.138). Cal-
culate the differential scattering cross-section that is the square of this function.
Use this program to demonstrate the extinction paradox and its dependence on
the size parameter ˇ, as it is demonstrated in Fig. 4.13. Modify this program
to consider scattering of a plane wave on a acoustically hard sphere. Hint:
This requires only a small change in (4.228) since the homogeneous Dirichlet
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Fig. 4.13 Differential scattering cross-section for two different size parameters. Results are
numerically obtained from (4.245). Dot-dashed line: ˇ D 100, full line: ˇ D 800

condition must be replaced by the homogeneous von Neumann condition at the
spherical surface of the scatterer! Compare the different scattering behaviour
of acoustically soft and hard spheres. For an initial program see Appendix A.2.



Chapter 5
Probability Experiments and Green’s Functions
in Classical Event Spaces

Maybe God is not playing dice. But the devil will most
likely do it

It was already mentioned in Sect. 1.3 that in contrast to Quantum Mechanics
probabilities are of less conceptual importance in classical physics. In this chapter
I will therefore propose an abstract probability state concept in two- and four-
dimensional but classical event spaces which can be related to special stochastic
sources and interactions. The classical event spaces are introduced independent of
whether the corresponding events are generated by classical or quantum objects.
Related Schrödinger-like equations and their Green’s functions are also introduced.
In so doing, it will be demonstrated that well-known concepts from Quantum
Mechanics can be applied with benefit also to special probability experiments with
classical particles, and that entanglement does not belong exclusively to the realm
of Quantum Mechanics (see the quotation of Schrödinger in Sect. 1.3). But I want to
emphasize that this chapter is not concerned with Quantum Mechanics. It rather
provides a phenomenological point of view on the probability experiments which
can be traced back to stochastic but impressed sources and to stochastic interactions.
As discussed in the Prologue of this book, we are not interested in an analysis of the
stochastic nature of the impressed sources. They are simply accepted to exist. But it
is our goal in what follows to find out if we are able to bring these sources and the
resulting probabilities measured in corresponding experiments into agreement, and
if this can be accomplished by use of a corresponding Green’s function formalism.

In Chap. 2, in conjunction with the temporal boundary value problem and based
on the bilinear expansion of Dirac’s delta function, the “source picture” of the
Fourier series was already introduced and discussed. In what follows, it is discussed
once again but as a result of the required time independence of the probabilities
related to the events of the considered event spaces.

A quite instructive class room experiment is introduced and discussed from the
point of view of the developed formalism in the second section of this chapter.
This experiment can be considered to represent the classical analog to the quantum
mechanical Bell’s experiment. It will allow us to discuss the different outcome of
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both experiments from a point of view that differs from the conventional discussion
one can find in the corresponding literature. The Clauser-Horne-Shimony-Holt-
inequality (CHSH-inequality) is of special importance in this context (see Clauser
et al. (1969)). Comparing these two experiments allows moreover an interesting
interpretation of the so-called “negative quasi-probabilities” known from the Wigner
functions and the Glauber-Sudarshan equation in Quantum Optics, for example. The
epistemological meaning of such probabilities is a further objective that is still under
discussion in Quantum Mechanics.

5.1 Probability Experiments in a Two-Dimensional Event
Space

5.1.1 Probability States and Green’s Function

We start from the assumption that we are able to relate characteristic states of
certain classical or quantum objects by use of an appropriate experimental setup
to two classical events—let us say to a “click” or “not a click” of a detector. That
is, “click” and “not a click” are the two possible events one may observe in a
single experimental step. Alternatively, a lamp may be “switched on”, or it remains
“switched off”. A probability can be related to each of these events if a multitude of
identical experimental steps are performed. We consider these probabilities as the
measurable quantities of the corresponding probability experiment. The following
simple examples are to put the idea across:

• When a coin is flipped, the result is either a head or tail. A detector produces a
click if the head is detected. There will be no click otherwise.

• When a marble is blindly drawn from a box that contains a number of white and
black marbles, its colour is either white or black. A detector produces a click if
the colour white is detected. There will be no click otherwise.

• When an electron is traversing an inhomogeneous magnetic field, it is either
deflected up or down. A detector produces a click if an upward deflection is
detected. There will be no click otherwise. This is the well-known Stern-Gerlach
experiment mentioned in the Prologue.

• When a linearly polarized photon hits upon a polarizing filter that is arbitrarily
oriented with respect to the plane of polarization of the incoming photon, the
photon is either allowed to pass through, or it is blocked out. A detector produces
a click if the photon is allowed to pass through. There will be no click otherwise.

• An example of a stochastic momentum source acting on a classical point mass
of mass m with two possible momenta is shown in Fig. 5.1. Detector D produces
a click if momentum pa is detected. There will be no click if momentum pb is
detected.
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Fig. 5.1 Experimental setup
of a stochastic momentum
source acting like a wheel of
Fortune on a classical point
mass m with two possible
momenta pa and pb

stochastic
momentum source

D
pa pb

m

We say that the detector produces a “click”—let us relate the value �1 D C1 to this
event—if it is in the state

j '1i D .1; 0/ : (5.1)

And we say that the detector produces “not a click”—let us relate the value �2 D �1
to this event—if it is in the state

j '2i D .0; 1/ : (5.2)

The two values �1=2 D ˙1 and the two vectors j'1=2i are the eigenvalues and
eigenvectors of Paulis’ spin matrix

† D
�
1 0

0 �1
�

D
2X

iD1
�i � j 'iih'i j (5.3)

(see Eq. (1.5) in Sect. 1.3), and the related eigenvalue problem reads

† ı j 'ii � �i � j 'ii D j 0i I i D 1; 2 : (5.4)

h'i j 'ji D ıi;j i; j D 1; 2 (5.5)

holds for the eigenvectors. They form a basis in this 2-dim. event space. It should
therefore be possible to completely characterize every probability experiment in this
space by the abstract probability state vector

j  i D c1� j '1i C c2 � j '2i ; (5.6)

where c1 and c2 are the probability amplitudes related to the two possible events.
These amplitudes are given by the square root of the measured probabilities c21
and c22 of detecting a “click” and “not a click” in the considered probability
experiment. This is the experimental point of view. Contrary, once we have derived
the probability state (5.6) of a certain experiment from theoretical considerations on
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the level of the abstract states—and this is exactly what we intend to do later on in
this chapter—the corresponding probabilities are obtained by the scalar product of
the projections

j  ni D j 'nih'n j  i I n D 1; 2 : (5.7)

That is, we have

h n j  ni D c2n I n D 1; 2 ; (5.8)

as well-known from Quantum Mechanics. The probabilities derived in this way from
theoretical considerations are justified only by their agreement with the measured
probabilities in a corresponding experiment, of course.

Next, we intend to relate this procedure to a Green’s function formalism. To this
end, let us consider the Schrödinger-like equation

� i a � d

dt
j  .t/i C † ı j  .t/i D � j �.t/i (5.9)

with matrix † given by (5.3). For the moment constant a as well as the state j �.t/i
of a primary impressed, stochastic source will be left unspecified. Here it is our main
goal to relate a certain probability state (5.6) via our pivotal relation (2.16), i.e., by

j  .t/i D
Z tC

t00

G.t; t0/ ı j �.t0/i dt0 ; (5.10)

to a given primary source. G.t; t0/ represents the Green’s function we are looking
for. t0 D t00 is the assumed lower limit of the initial time, and t � t00 is the observation
time. The handling of the time dependence will be discussed shortly. The Green’s
function satisfies the equation

� i a � dG.t; t0/
dt

C † ı G.t; t0/ D � D1 � ı.t � t0/ ; (5.11)

where D1 on the right-hand side represents the unit dyad (unit operator)

D1 D
2X

nD1
j 'nih'n j : (5.12)

To demonstrate that this Green’s function will provide us indeed with a solution of
Eq. (5.9), let us insert (5.10) into Eq. (5.9). This gives

�
� i a � dG.t; t0/

dt
C † ı G.t; t0/

�
ı j �.t0/i D � j �.t/i : (5.13)
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Expanding the primary impressed, stochastic source on both sides according to

j �.t/i D
2X

nD1
�n.t/� j 'ni (5.14)

with yet not specified coefficients �n.t/, and if taking the property

f .t/ � ı.t � t0/ D f .t0/ (5.15)

of Dirac’s delta function and identity

D1ı j �.t0/i D j �.t0/i (5.16)

on the right-hand side of (5.13) into account results in Eq. (5.11). This equation can
be solved with the Fourier transform method by employing

G.t; t0/ D
Z 1

�1
d!

2�
G.!/ � e �i!.t�t0/ (5.17)

and

ı.t � t0/ D
Z 1

�1
d!

2�
e �i!.t�t0/ (5.18)

with respect to time, as already done in Sect. 3.4.3. Expanding the Fourier transform
of the Green’s function in terms of the dyadic products of the eigenvectors j '1i and
j '2i gives

G.!/ D 1

a
�

2X
nD1

j 'nih'n j
! � �n

a

; (5.19)

where �n are the corresponding eigenvalues ˙1. Inserting this expression into (5.17)
and applying the residual theorem provides the Green’s function

G.t; t0/ D i

a

2X
nD1

e � i
a�n�.t�t0/� j 'nih'n j D

i

a
�

2X
nD1

j 'n.t/ih'n.t
0/ j ; (5.20)

where

j 'n.t/i D e � i
a�n�t� j 'ni : (5.21)
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Please, consider that h'n.t/ j denotes the conjugate-complex of j 'n.t/i. Comparable
expressions are known from Quantum Mechanics, as we will see in the final chapter.
Next we introduce the primary impressed source

j �.t0/i D a

i
� ı.t0 � t00/ �

2X
nD1

cn� j 'ni (5.22)

with amplitudes cn considered to be given. We thus get from (5.20) and (5.10) the
time dependent probability state vector

j  .t/i D
2X

nD1
cn� j 'n.t � t00/i : (5.23)

Now we reached the point where we have to discuss the handling of the time
dependence.

First I want to emphasize once again that we do not practice Quantum Mechanics
in this chapter. Thus, there is no need to go into the details of its sophisticated
time concept (for a detailed analysis of the time concept in conventional Quantum
Mechanics, see Hilgevoord and Atkinson (2011), for example). However, what the
following experiments have in common with Quantum Mechanics are the facts
that time is not considered as a continuously varying dynamical variable, and that
the probabilities we are interested in are independent of time. The only situation
where we have to take the “time-parameter” into account is—beside its usage in
the primary impressed source (5.22) that produces a process at a certain “initial
time” t00, and that results in a single event at a “later time” t � t00—the additional
existence of a stochastic interaction process that may affect the probabilities of
an experiment. We have therefore to distinguish whether the measurements of the
single events are performed after the primary impressed source was acting but
before this interaction, or after this interaction. This situation will allow us to
proceed in an easy and pragmatic way with the time dependence of the Green’s
functions and the probability state vectors. Regarding the Green’s functions, this
can be accomplished simply by multiplication by appropriate Heaviside functions,
as already done in Sect. 2.7. This will be employed again in what follows. Regarding
the state vector (5.23) there are two options. The easiest way to proceed is to
ignore the time dependence in (5.23) since it appears only as a phase term and
is washed out if calculating the probabilities according to (5.8) from the now time
dependent projections (5.7). Unfortunately, it does not work that way if an additional
interaction process is considered, as we will see shortly. We will therefore employ
the second option that uses the freedom of choosing the parameter a. Let us therefore
introduce the time independent probability state vector by the definition

j  i WD lim
a!1 j  .t/i D

2X
nD1

cn� j 'ni : (5.24)
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The corresponding probabilities are again obtained from (5.7) and (5.8). For
example, if c1 D c2 D 1=

p
2 is used in the primary impressed source (5.22) we

get the probabilities c21 D c22 D 1=2. All the 5 initially mentioned examples are
possible ways to put such an impressed source into practice.

Before we will discuss a specific interaction process it is of some importance
for what follows to mention another aspect in conjunction with the impressed
source (5.22). It can be considered to consists of the two parts

j �.t0/i D j �1.t0/i C j �2.t0/i ; (5.25)

where j �1.t0/i and j �2.t0/i are given by

j �1.t0/i D a

i
� ı.t0 � t00/ � c1� j '1i (5.26)

and

j �2.t0/i D a

i
� ı.t0 � t00/ � c2� j '2i : (5.27)

These two subsources result in the two time independent substates

j  1i D c1� j '1i (5.28)

and

j  2i D c2� j '2i : (5.29)

The superposition of these substates provides the total probability state

j  i D j  1i C j  2i : (5.30)

There is obviously no difference in the resulting probabilities if (5.7) and (5.8) are
applied to the total probability state (5.30), or if applied to each substate (5.28)
and (5.29) separately. This property differs from that one discussed in conjunction
with the intensity distribution of plane wave scattering on a double-slit (see
Eqs. (4.41)–(4.51) in Sect. 4.2). It can be explained by the fact that the two
subsources as well as the two substates (5.28) and (5.29) are disjoint, i.e., that they
do not have any basis vectors in common (see also Sect. 4.2 for the definition of
disjoint and nondisjoint vectors). Regarding the above situation this behaviour looks
like a triviality. However, we will see in the following experiment with an additional
interaction but especially in the next section that this aspect is within the heart of
our explanation of the different probabilities measured in the quantum mechanical
Bell’s experiment and its classical analog. But let me also emphasize the fact that
the state (5.30) and the resulting probabilities c21 and c22 are in total agreement with
our classical experience of such probability experiments!
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5.1.2 Stochastic Interaction

Beside the primary impressed source there may also exist an additional stochastic
interaction that takes place at time tint. This interaction may result in a change of
the initial probabilities c21 and c22 generated by the primary impressed source. The
scheme of the stochastic interaction process that is now of our interest is depicted in
Fig. 5.2. It depends on a parameter ˇ. The scheme with corresponding probability
amplitudes that fits into this interaction process is shown in Fig. 5.3. To give an
idea of how to put such a probability experiment into practice, let us go back to
the initially mentioned experiment with black and white marbles. It runs as follows:
The primary impressed, stochastic source is represented by a box Bp that contains
one white and one black marble. The stochastic interaction, on the other hand,
is represented by two additional boxes Bw and Bb filled with different numbers
of black and white marbles. The number of marbles in box Bw is such that we
have the probabilities cos2 ˇ= sin2 ˇ to draw a white/black marble from this box
(if ˇ D �=8, for example, then there are 17 white and three black marbles in this
box). Correspondingly, the number of marbles in box Bb is such that we have the
probabilities cos2 ˇ= sin2 ˇ to draw a black/white marble from this box (if ˇ D �=8,
then there are 17 black and three white marbles in this box). Each single experiment
is performed in the following way: We draw blindly one marble from box Bp. If this
is a white marble we draw another marble blindly from box Bw. Its colour is the
result of this single experiment. But if we draw a black marble from box Bp we have
to draw another marble blindly from box Bb. The result of this single experiment is
then given by the colour of this marble. The observed probabilities are independent
of the parameter ˇ and given by

c21 D c22 D 1

2
; (5.31)

as the reader may verify by himself (500 single events are sufficient for a fixed
parameter ˇ, as me and my family find out at a rainy weekend). That is, this

Fig. 5.2 Stochastic
interaction at time tint. A
primary impressed, stochastic
source generates the two
probabilities c21 D c22 D 1=2

if the two possible events are
always detected before tint.
After the interaction and
depending on the parameter ˇ
both events may possibly be
observed with different
probabilities

λ1 : [cos2 β]

λ2 : [sin2 β]

λ2 : [cos2 β]

λ1 : [sin2 β]

tint

⊗

λ2 : [1/2]

λ1 : [1/2]

primary

impr. source
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Fig. 5.3 Scheme of
ˇ-dependent amplitudes that
fits into the stochastic
interaction process depicted
in Fig. 5.2

λ1 : [cosβ]

λ2 : [− sinβ]

λ2 : [cosβ]

λ1 : [sinβ]

tint

⊗

λ2 : [1 2]

λ1 : [1/
√
2]

/
√

primary

impr. source

experiment does not results in a change of the probabilities generated by the primary
impressed source.

But how can this experiment be related to a Green’s function formalism? To
answer this question we will fall back on our experience that an interaction process
can in some situations equivalently be described by a basis transformation. This is
what we have already demonstrated in conjunction with the interaction of a linearly
polarized plane wave with a polarizing filter, and with plane wave scattering on a
sphere. We first note that the two states

j Q'1i D .cosˇ;� sinˇ/ (5.32)

j Q'2i D .sinˇ; cosˇ/ (5.33)

form also a basis in the considered 2-dim. event space. Employing the shorter
matrix-vector notation introduced in Sect. 4.2 (or, better, matrix-supervector nota-
tion since the elements of this supervector are the basis vectors) the relation between
the old and new basis vectors may be expressed by

.j '1i; j '2i/ D .j Q'1i; j Q'2i/ � Tˇ (5.34)

with the so far unknown transformation matrix Tˇ . Dyadic multiplication of this
expression by the column vector .h Q'1 j; h Q'2 j/tp from the left,

� h Q'1 j
h Q'2 j

�
� .j '1i; j '2i/ D

� h Q'1 j
h Q'2 j

�
� .j Q'1i; j Q'2i/ � Tˇ ; (5.35)

provides

Tˇ D
� h Q'1 j '1i h Q'1 j '2i

h Q'2 j '1i h Q'2 j '2i
�

D
�

cosˇ � sinˇ
sinˇ cosˇ

�
: (5.36)

This T-matrix is nothing but the matrix (4.60) of rotation. Furthermore,

D2 D
2X

nD1
j Q'nih Q'n j (5.37)
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represents again a unit dyad (unit operator), and the corresponding Green’s function
reads

GR.t; t
0/ D i

a
�

2X
nD1

j Q'n.t/ih Q'n.t
0/ j : (5.38)

Next,

Gt.t; t
0/ D G.t; t0/ � H.tint � t/ C GR.t; Nt/ ı W.Nt; Qt/ ı G.Qt; t0/ � H.t � tint/ (5.39)

is used as an ansatz for the total Green’s function of the considered probability
experiment. The Heaviside functions allow us to distinguish whether the single
events are measured before or after the interaction process, as already mentioned.
G.t; t0/ and GR.t; t0/ are given by (5.20) and (5.38). Equation (5.39) can be
compared with ansatz (4.176) used for the scattering part of the Green’s function
related to plane wave scattering on a sphere. It should also be perceived as the
defining equation for the so far unknown “interaction operator” W. This operator
can be determined from the condition

lim
�!0

"
2X

kD1
h'k j Gt j 'ki

#

tDtint��
D lim

�!0

"
2X

kD1
h'k j Gt j 'ki

#

tDtintC�
I � > 0

(5.40)
that relates the two parts before and after the interaction, and that guarantees the
conservation of the respective sum of probabilities. We thus get

2X
k;nD1

h 'k j 'n.t/i h 'n.t
0/ j 'ki D

i

a
�

2X
k;n;mD1

h'k j Q'n.t/i h Q'n.Nt/ j W.Nt; Qt/ j 'm.Qt/i h'm.t
0/ j 'ki : (5.41)

With the definition

ŒW�nm.Nt; Qt/ WD h Q'n.Nt/ j W j 'm.Qt/i I n;m D 1; 2 (5.42)

of the matrix elements of the interaction operator the right-hand side of (5.41) may
be rewritten into

i

a
�

2X
k;n;mD1

ŒW�nm.Nt; Qt/ � h'k j Q'n.t/i � h'm.t
0/ j 'ki : (5.43)
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Taking relation (5.34) and property (5.15) into account, it follows that Eq. (5.41)
holds if the matrix elements of the interaction operator are given by

ŒW�nm.Nt; Qt/ D a

i
�e i

a ��n�Nt� i
a ��m�Qt�ŒTˇ�nm �ı.Nt�tint/�ı.Qt�tint/ I n;m D 1; 2 : (5.44)

The total Green’s function that fits into the scheme of Fig. 5.3 reads therefore

Gt.t; t
0/ D i

a
� H.tint � t/ �

2X
n;mD1

ınm� j 'n.t/ih'm.t
0/ j C

i

a
� H.t � tint/ �

2X
n;mD1

e � i
a .�m��n/�tint � ŒTˇ�nm� j Q'n.t/ih'm.t

0/ j : (5.45)

From (5.10), Green’s function (5.45) for observation times t > tint, and from the two
subsources (5.26) and (5.27) we get the two time dependent substates

j  1.t/i D 1p
2

�
2X

nD1
e � i

a .�1��n/�tint � e � i
a�n �t � e

i
a�1�t00 � ŒTˇ�n1� j Q'ni (5.46)

and

j  2.t/i D 1p
2

�
2X

nD1
e � i

a .�2��n/�tint � e � i
a�n�t � e

i
a�2�t00 � ŒTˇ�n2� j Q'ni : (5.47)

Then, from definition (5.24) it follows

j  1i D 1p
2

�
2X

nD1
ŒTˇ�n1� j Q'ni D

1p
2

� .cosˇ� j Q'1i C sinˇ� j Q'2i/ (5.48)

and

j  2i D 1p
2

�
2X

nD1
ŒTˇ�n2� j Q'ni D

1p
2

� .� sinˇ� j Q'1i C cosˇ� j Q'2i/ (5.49)

for the corresponding time independent expressions. It is now straightforward to
show that we end up with the probabilities (5.31) if the probabilities of each event
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are at first calculated separately from the projections

j . 1=2/ni D j Q'nih Q'n j  1=2i I n D 1; 2 (5.50)

of each substate and summed up afterwards. It should also be noted that the proba-
bilities obtained from each substate separately belong to the following modification
of the marble experiment: Regarding j  1i we have

c21 D 1

2
� cos2 ˇ (5.51)

and

c22 D 1

2
� sin2 ˇ : (5.52)

These are the probabilities for drawing a white (c21) or black marble (c22) from box
Bw if a white marble was drawn from the primary box Bp. From j  2i we get on the
other hand

c21 D 1

2
� sin2 ˇ (5.53)

and

c22 D 1

2
� cos2 ˇ : (5.54)

These are the probabilities for drawing a white (c21) or black marble (c22) from
box Bb if a black marble was drawn from the primary box Bp. These probabilities
are dependent on the parameter ˇ. But there exists another possibility to calculate
probabilities. The superposition of the two substates provides the total state

j  ti D 1p
2

� Œ.cosˇ � sinˇ/ � j Q'1i C .cosˇ C sinˇ/ � j Q'2i� : (5.55)

The probabilities are then given by

c21 D 1

2
.1 � 2 cosˇ sinˇ/ (5.56)

and

c22 D 1

2
.1 C 2 cosˇ sinˇ/ (5.57)
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which show the characteristic interference term we discovered already in conjunc-
tion with the intensities (4.69)–(4.71) in Sect. 4.2. This is a consequence of the fact
that both substates are now nondisjoint vectors since they do have basis vectors
in common. But these probabilities do not agree with our experimental experience
from the marble experiment! One may ask if there exists any probability experiment
that would end up with such probabilities? Let us shift the answer to the next section.

5.1.3 An Alternative Description of the Probability
Experiments

The whole problem with the time dependence of the probability state vector can
be avoided if employing the “source picture” of the Fourier series, as introduced in
Sect. 2.6 (see Eqs. (2.297)–(2.299) and the subsequent discussion). Regarding the
probability experiments considered in this section this can simply be achieved if
replacing our pivotal relation (5.10) by

j  i D Fı j �i ; (5.58)

and if using

F D D1 � H.tint � t/ C D2 ı W ı D1 � H.t � tint/ : (5.59)

instead of ansatz (5.39) for the Green’s function in the presence of the additional
stochastic interaction. Let us call F the “Fourier-operator” since it transfers the
Fourier series of the source state into the Fourier series of the probability state.
With the exception of the Heaviside functions all quantities in (5.58) and (5.59)
are now considered to be independent of time. D1=2 are the unit operators according
to (5.12)/(5.37), and W is again the interaction operator. With the Heaviside function
we distinguish again between a “before” and an “after” the interaction. The Fourier
operator is identical with the unit operator D1 before the interaction. Applying
condition (5.40) to (5.59) results in

F D H.tint � t/ �
2X

n;mD1
ınm� j 'nih'm j C

H.t � tint/ �
2X

n;mD1
ŒTˇ�nm� j Q'nih'm j : (5.60)

ŒW�nm D ŒTˇ�nm I n;m D 1; 2 (5.61)
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are now the corresponding matrix elements of the interaction operator. With the
impressed source

j �i D j �1i C j �2i ; (5.62)

where j �1i and j �2i are given by

j �1i D c1� j '1i (5.63)

and

j �2i D c2� j '2i ; (5.64)

and in dependence on whether we have t < tint or t > tint we arrive immediately
at (5.28)/(5.29) or (5.48)/(5.49). This is again more than a simple tautological
mapping of the source onto the state, as already discussed in Sect. 2.6 in a formal
manner.

5.2 Probability Experiments in a Four-Dimensional Event
Space

5.2.1 Probability States and Green’s Function

The classical events of our interest in this section are still the “click” and “not a
click” of a detector. But now we have two detectors placed above and below or on
the left- and right-hand side of a primary impressed, stochastic source. To get an
idea of the situation let us consider the following modifications of the experiments
mentioned at the beginning of Sect. 5.1.1:

• When a coin is flipped, the result is either “head faces up” and “tail faces
down” or “tail faces up” and “head faces down”. Two detectors are placed above
(detector DA) and below (detector DB) the coin. A detector produces a click if
the head is detected. There will be no click otherwise. The two different pairs of
events in a single experimental step are “click of DA” but “no click of DB”, and
“click of DB” but “no click of DA”.

• An example of a stochastic momentum source acting on two classical point
masses of mass m with two possible momenta is shown in Fig. 5.4. A detector
produces a click if momentum pa is detected. There will be no click if momentum
pb is detected. This provides again the two different pairs of events mentioned in
the foregoing example.

• Two marbles are blindly drawn from a box that contains a number of white and
black marbles. They are placed (also blindly) on the left- and right-hand side of
this box. Moreover, a detector is mounted on each side (detector DA on the left-
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B:A:

stochastic

momentum source

DA DB
pa pb

m m

Fig. 5.4 Experimental setup of a stochastic momentum source acting like a wheel of Fortune on
two classical point masses of mass m with the two possible momenta pa and pb

hand side, and detector DB on the right-hand side) that produces a click if a white
marble is detected. There will be no click otherwise. We thus have in general 4
different pairs of events: “click of DA” but “no click of DB”, “click of DB” but
“no click of DA”, “click of both detectors”, and “no click of both detectors”.

• Two electrons are simultaneously emitted from a source into its left- and right-
hand side. If each electron is traversing an inhomogeneous magnetic field, it is
either deflected up or down. A detector is mounted on each side that produces a
click if an upward deflection is detected. There will be no click otherwise. This
provides the 4 different pairs of events mentioned in the foregoing example.

• Two linearly polarized photons are simultaneously emitted from a source into
its left- and right-hand side. If each photon hits upon a polarizing filter that
is arbitrarily oriented with respect to the plane of polarization of the incoming
photon, the photon is either allowed to pass through or it is blocked out. A
detector on each side produces a click if the photon is allowed to pass through.
There will be no click otherwise. This provides the 4 different pairs of events
mentioned in the two foregoing examples.

Regarding the last three examples we have in general 4 different pairs of events.
These are the combinations of the single events on both sides (side A and B). We
say that

• both detectors are in the product state

j '1i j '1i D j '11i (5.65)

if there are clicks on both sides.

ƒ11 D �1 � �1 (5.66)

is the corresponding product of the eigenvalues.
• both detectors are in the product state

j '1i j '2i D j '12i (5.67)
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if DA produces a click but not DB.

ƒ12 D �1 � �2 (5.68)

is the corresponding product of the eigenvalues.
• both detectors are in the product state

j '2i j '1i D j '21i (5.69)

if DB produces a click but not DA.

ƒ21 D �2 � �1 (5.70)

is the corresponding product of the eigenvalues.
• both detectors are in the product state

j '2i j '2i D j '22i (5.71)

if there are no clicks on both sides.

ƒ22 D �2 � �2 (5.72)

is the corresponding product of the eigenvalues.

The eigenvalues are again �1 D 1 and �2 D �1. These vectors form a basis in the
4-dim. product space. They can be considered to represent the eigenvectors of the
dyadic quantity

† D
2X

i;jD1
ƒij� j 'ijih'ji j : (5.73)

The related eigenvalue problem reads

† ı j 'iji � ƒij � j 'iji D j 0i I i; j D 1; 2 : (5.74)

Please, note that the scalar product of the two vectors j f ; gi and jp; qi in the product
space is defined according to

hg; f j p; qi WD h f j pi � hg j qi : (5.75)

It should therefore again be possible to completely characterize every probability
experiment in this product space by the abstract probability state vector

j  i D
2X

i;jD1
cij� j 'iji ; (5.76)
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where cij are now the probability amplitudes related to the four possible pairs of
events. The corresponding probabilities are obtained by the scalar product of the
projections

j  nmi D j 'nmih'mn j  i I n;m D 1; 2 : (5.77)

That is, we have

h mn j  nmi D c2nm I n;m D 1; 2 ; (5.78)

and

2X
n;mD1

c2nm D 1 : (5.79)

Next, we intend to relate this procedure again to a Green’s function formalism. The
Green’s function is now a solution of the Schrödinger-like equation

� i a � dG.t; t0/
dt

C † ı G.t; t0/ D � D1 � ı.t � t0/ (5.80)

with dyad † given by (5.73). D1 on the right-hand side represents the unit dyad
(unit operator)

D1 D
2X

n;mD1
j 'nmih'mn j (5.81)

in this product space. This equation can again be solved with the Fourier transform
method by employing (5.17) and (5.18) with respect to time. Expanding the Fourier
transform of the Green’s function in terms of the dyadic products of the eigenvectors
j 'nmi gives

G.!/ D 1

a
�

2X
n;mD1

j 'nmih'mn j
! � ƒnm

a

; (5.82)

Inserting this expression into (5.17) and applying the residual theorem provides now
the Green’s function

G.t; t0/ D i

a

2X
n;mD1

j 'nm.t/ih'mn.t
0/ j ; (5.83)

where

j 'nm.t/i D e � i
aƒnm�t� j 'nmi ; (5.84)
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and

h'mn.t/ j D e
i
aƒnm�t � h'mn j : (5.85)

Any primary impressed source

j �.t0/i D a

i
� ı.t0 � t00/ �

2X
i;jD1

�ij� j 'iji (5.86)

with coefficients �ij considered to be given provides the time dependent probability
state vector

j  .t/i D
Z tC

t00

G.t; t0/ ı j �.t0/i dt0 D
2X

i;jD1
�ij� j 'ij.t � t00/i : (5.87)

Applying definition (5.24) results finally in the corresponding time independent
probability state vector

j  i D
2X

i;jD1
�ij� j 'iji : (5.88)

As an example, let us now consider the primary impressed source

j �.t0/i D j �1.t0/i C j �2.t0/i ; (5.89)

where

j �1.t0/i D a

i
� ı.t0 � t00/ � 1p

2
� j '12i (5.90)

and

j �2.t0/i D � a

i
� ı.t0 � t00/ � 1p

2
j '21i : (5.91)

Such a source can be related to the probability experiments with the flipped coin
and the momentum source, for example, mentioned at the beginning of this section.
The resulting time independent substates are accordingly given by

j  1i D 1p
2

� j '12i (5.92)
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and

j  2i D � 1p
2

� j '21i : (5.93)

The superposition of these substates represents again the total state

j  i D j  1i C j  2i D 1p
2

� .j '12i � j '21i/ : (5.94)

And, since these substates are disjoint, the resulting probabilities

c212 D c221 D 1=2 (5.95)

for the two pairs of events are again independent of whether these probabilities are
calculated from each substate separately, or if calculated from the total state. Please,
note also the minus sign in (5.91) that makes this source differ from that one given
in (5.25). But the choice of this sign is of no importance as long as probability
experiments with classical objects are considered. However, regarding comparable
experiments with quantum objects—these are in particular the quantum mechanical
Bell’s experiments—the minus sign can frequently be found in the literature to
characterize the initial state. I will therefore also use it in what follows. And, finally,
I want to emphasize again that the state (5.94) and the resulting probabilities (5.95)
are in total agreement with our classical experience of such probability experiments!
In view of the discussion regarding the epistemological meaning of entanglement in
Quantum Mechanics (see the quotation of Schrödinger mentioned in Sect. 1.3, for
example) and the fact that (5.94) represents an entangled state, this aspect seems to
me of some importance.

5.2.2 Entangled States and CHSH-Inequality

A general probability state in the 4-dim. product space is given by (5.76) and (5.79).
It can be shown that, if condition

c11 � c22 D c12 � c21 (5.96)

holds for the probability amplitudes, then we are able to resolve (5.76) into the
product of the two 2-dim. states

j  li D
2X

nD1
cn� j 'ni (5.97)

j  ri D
2X

nD1
Qcn� j 'ni (5.98)
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related to the left- and right-hand side of the probability experiments. The probabil-
ity amplitudes are again normalized to unity,

2X
nD1

c2n D
2X

nD1
Qc2n D 1 : (5.99)

Moreover, if condition (5.96) holds the probabilities and amplitudes are related by

c2n D
2X

mD1
c2nm I n D 1; 2 ; (5.100)

Qc2n D
2X

mD1
c2mn I n D 1; 2 ; (5.101)

and

cnm D cn � Qcm : (5.102)

On the other hand, if condition (5.96) is violated, we are unable to resolve (5.76)
into the product of the two states (5.97) and (5.98). In this case (5.76) is called an
“entangled state”. Condition (5.96) provides therefore a simple criterion to prove
whether a given probability state in the 4-dim. event space is entangled or not.
Applied to (5.94), it becomes clear that this is indeed an entangled state. This
contradicts the point of view that entanglement belongs exclusively to the realm
of Quantum Mechanics. Entangled probability states, even if quite formal, can
obviously be used to describe also the results of certain experiments with classical
objects in a four-dimensional event space.

Let us now discuss the CHSH-inequality. To this end, we assume that the
probability amplitudes cnm.˛; ˇ/ are dependent on the two parameters ˛ and ˇ.
How this can be accomplished by an additional interaction will be demonstrated
shortly. The corresponding probabilities are still normalized to unity,

2X
n;mD1

c2nm.˛; ˇ/ D 1 : (5.103)

Once we have determined the probabilities c2nm.˛; ˇ/; n;m D 1; 2 related to a fixed
parameter set .˛; ˇ/ of a certain experiment in the 4-dim. event space the following
correlation function can be defined:

C.˛; ˇ/ WD c211.˛; ˇ/ C c222.˛; ˇ/ � c212.˛; ˇ/ � c221.˛; ˇ/ : (5.104)
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It was shown by J. Clauser, M. Horne, A. Shimony, and R. Holt in Clauser et al.
(1969) that the inequality

ˇ̌
C.˛; ˇ/ � C.˛; ˇ 0/

ˇ̌ C ˇ̌
C.˛0; ˇ/ C C.˛0; ˇ 0/

ˇ̌ � 2 (5.105)

must hold for any experiment that can be described by a “theory of local realism”.
Here will left open what precisely a “theory of local realism” means since it is
outside the scope of this book. But it is tacitly assumed among most of the physicists
that—in contrast to Quantum Mechanics—any theory of classical physics belongs
to such a theory. That is, there should exist only quantum mechanical probability
experiments which result in a violation of this inequality. And such experiments are
indeed possible, as first demonstrated by A. Aspect and co-workers (1982). It would
therefore be desirable to have a criterion for proving whether the CHSH-inequality
can be violated with a certain probability experiment in our 4-dim. event space or
not. Here it is:

Due to definition (5.104) and (5.103)

jC.˛; ˇ/j � 1 (5.106)

holds for any parameter set .˛; ˇ/. The difference between the two correlation
functions C.˛; ˇ/ and C.˛; ˇ 0/ may be expressed by

C.˛; ˇ/ � C.˛; ˇ 0/ D C.˛; ˇ/ � �1˙ C.˛0; ˇ 0/
� �

C.˛; ˇ 0/ � �1˙ C.˛0; ˇ/
� D C.˛; ˇ/ � C.˛; ˇ 0/ ˙�

C.˛; ˇ/ � C.˛0; ˇ 0/ � C.˛; ˇ 0/ � C.˛0; ˇ/
�
: (5.107)

This is obviously an identity only if

C.˛; ˇ/ � C.˛0; ˇ 0/ � C.˛; ˇ 0/ � C.˛0; ˇ/ D 0 : (5.108)

That is, if this condition holds (5.107) represents nothing but adding a “nutritious
zero” to the difference of C.˛; ˇ/ and C.˛; ˇ0/. Taking the inequality

ja � bj � jaj C jbj (5.109)

into account we thus get from (5.107)

ˇ̌
C.˛; ˇ/ � C.˛; ˇ 0/

ˇ̌ � ˇ̌
C.˛; ˇ/ � �1˙ C.˛0; ˇ 0/

�ˇ̌ Cˇ̌
C.˛; ˇ 0/ � �1˙ C.˛0; ˇ/

�ˇ̌
: (5.110)
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The expressions inside the brackets on the right-hand side are always � 0, according
to (5.106). We can therefore also write

ˇ̌
C.˛; ˇ/ � C.˛; ˇ 0/

ˇ̌ � jC.˛; ˇ/j � �1˙ C.˛0; ˇ 0/
� Cˇ̌

C.˛; ˇ 0/
ˇ̌ � �1˙ C.˛0; ˇ/

�
: (5.111)

From this expression and from (5.106) the inequality

ˇ̌
C.˛; ˇ/ � C.˛; ˇ 0/

ˇ̌ � 2 ˙ �
C.˛0; ˇ 0/ C C.˛0; ˇ/

�
� 2 � ˇ̌

C.˛0; ˇ 0/ C C.˛0; ˇ/
ˇ̌

(5.112)

follows in a straightforward way. But we see also that

C.˛; ˇ/ � C.˛0; ˇ 0/ � C.˛; ˇ 0/ � C.˛0; ˇ/ ¤ 0 (5.113)

is a necessary condition to violate the CHSH-inequality!

5.2.3 Stochastic Interaction

The scheme of the stochastic interaction process that is of our interest in this 4-
dim. event space is depicted in Fig. 5.5. It is an extension of the scheme depicted
in Fig. 5.3 to the left-hand side. To give an idea of how to put a corresponding
probability experiment with classical objects into practice, let us again fall back to

[cosα] : λ2

[sinα] : λ1

[cosα] : λ1

[− sinα] : λ2

λ1 : [cosβ]

λ2 : [− sinβ]

λ2 : [cosβ]

λ1 : [sin β]

⊗

λ2

λ1

λ1

λ2

A : B :

prim.
impr. source

tint tint

[
− 1√

2

]

[
1√
2

]

Fig. 5.5 Scheme of a probability experiment with two additional but local interactions at t D tint

in a 4-dim. event space. The local interactions on the left- and right-hand side are dependent on the
parameters ˛ and ˇ. The related probability amplitudes are given in the square brackets
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the marble experiment. It runs as follows: A box Bp with one white and one black
marble represents the primary impressed source that generates the two pairs (white
marble, black marble) and (black marble, white marble) on side (A,B), each with
a probability of 1=2. Two additional boxes Bw and Bb are filled with 17 white and
three black marbles (box Bw), and 17 black and three white marbles (box Bb). These
two boxes represent again the local interaction on the right-hand side if ˇ D �=8.
If there is no additional interaction on the left-hand side we have the parameter
configuration .˛; ˇ/ D .0; �=8/ for this experiment. We proceed as follows:

We draw both marbles blindly from box Bp and put one marble on the left-hand
side and the other marble on the right-hand side on our desk. The colour of the
marble on the left-hand side is already the result of this side since ˛ D 0. To get
the result on the right-hand side requires an additional step. If the primary marble
on the right-hand side is white, then we have to draw another marble from box
Bw. Its colour is the result on the right-hand side. But if the primary marble on
the right-hand side is black, then we have to draw another marble from box Bb. Its
colour will then be the result on the right-hand side. We repeat this procedure until
we are able to calculate the four probabilities c211 D(white, white), c222 D(black,
black), c212 D(white, black), and c221 D(black, white) related to the colours of
the marbles on both sides within a sufficient accuracy (please, remember that a
white marble produces a “click”, and a black marble produces “not a click” of the
respective detector!). The corresponding correlation function C.0; �=8/ is obtained
from (5.104).

If the parameter configuration .0; 3�=8/ is chosen, the experiment runs as
follows: The first step to get the result on the left-hand side is as before. But, now, if
the primary marble on the right-hand side is white, then we have to draw another
marble from box Bb. Its colour is the result on the right-hand side. On the other
hand, if the primary marble on the right-hand side is black, then we have to draw
another marble from box Bw. This colour will then be the result on the right-hand
side. We repeat this procedure again until we are able to calculate the probabilities
and the correlation function C.0; 3�=8/ within a sufficient accuracy.

We can proceed in a similar way if the local parameter ˛ on the left-hand side
is nonzero. The only thing we have to do is to fill two additional boxes on the
left-hand side with an appropriate number of black and white marbles to meet
the probabilities of the local interaction on this side. If ˛ D �=4, for example,
sin2 ˛ D cos2 ˛ D 1=2 holds. That is, only one additional box with one white and
one black marble is needed in this case on the left-hand side.

Performing this experiment with at least 5000 single measurements for a given
parameter configuration .˛; ˇ/ is sufficient to approach the probabilities obtained
from conventional probability theory. These probabilities are given by

c211 D c222 D 1

2
� 	sin2 ˛ � cos2 ˇ C sin2 ˇ � cos2 ˛



(5.114)

c212 D c221 D 1

2
� 	cos2 ˛ � cos2 ˇ C sin2 ˇ � sin2 ˛



: (5.115)

Let us accept these probabilities as an experimental fact.
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Exercise: Development of a computer programm for the above described
marble experiment. Use this program to test (5.114) and (5.115). A PYTHON
code for this experiment is given in Appendix A.3.

Now we are again interested in deriving these probabilities from a Green’s
function in the 4-dim. event space. This can be accomplished in the same way as
described in Sect. 5.1.2. We note that beside the basis j 'ijiI i; j D 1; 2 defined
in (5.65)–(5.71) the product vectors

j Q'AB
ij i D j Q'A

i i j Q'B
j i I i; j D 1; 2 ; (5.116)

where

j Q'A
1 i D .cos˛;� sin ˛/ (5.117)

j Q'B
1 i D .cosˇ;� sinˇ/ (5.118)

j Q'A
2 i D .sin ˛; cos˛/ (5.119)

j Q'B
2 i D .sinˇ; cosˇ/ ; (5.120)

represent also a basis in the 4-dim. product space. For the sake of convenience, let
us introduce the shorter notation

j „1i WD j '11i ; j „2i WD j '12i
j „3i WD j '21i ; j „4i WD j '22i ; (5.121)

and

j ‰1i WD j Q'AB
11 i ; j ‰2i WD j Q'AB

12 i
j ‰3i WD j Q'AB

21 i ; j ‰4i WD j Q'AB
22 i ; (5.122)

for these two systems of basis vectors. The shorter notation

Nƒ1 D ƒ11

Nƒ2 D ƒ12

Nƒ3 D ƒ21

Nƒ4 D ƒ22 : (5.123)

is used for the corresponding products of the eigenvalues. The two expansions

D1 D
4X

iD1
j „ii h„i j (5.124)
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(this is identical with (5.81)) and

D2 D
4X

iD1
j ‰ii h‰i j (5.125)

in terms of the sum of dyadic products represent the unit operators in the respective
product space before and after the interaction. And, in analogy to (5.83), the Green’s
function in the latter 4-dim. product space reads

GR.t; t
0/ D i

a

4X
nD1

j ‰n.t/ih‰n.t
0/ j ; (5.126)

where

j ‰n.t/i D e � i
a

Nƒn�t� j ‰ni ; (5.127)

and

h‰n.t
0/ j D e

i
a

Nƒn �t0 � j ‰ni : (5.128)

Next, we introduce the T-matrix

T˛ˇ D

0
BB@

h‰1 j „1i h‰1 j „2i h‰1 j „3i h‰1 j „4i
h‰2 j „1i h‰2 j „2i h‰2 j „3i h‰2 j „4i
h‰3 j „1i h‰3 j „2i h‰3 j „3i h‰3 j „4i
h‰4 j „1i h‰4 j „2i h‰4 j „3i h‰4 j „4i

1
CCA D

0
BB@

cos˛ � cosˇ � cos˛ � sinˇ � sin˛ � cosˇ sin ˛ � sinˇ
cos˛ � sinˇ cos˛ � cosˇ � sin˛ � sinˇ � sin ˛ � cosˇ
sin ˛ � cosˇ � sin ˛ � sinˇ cos˛ � cosˇ � cos˛ � sinˇ
sin ˛ � sinˇ sin ˛ � cosˇ cos˛ � sinˇ cos˛ � cosˇ

1
CCA : (5.129)

It can be shown that the following transformation applies to these basis vectors
(compare also (5.34)):

.j „1i; j „2i; j „3i; j „4i/ D .j ‰1i; j ‰2i; j ‰3i; j ‰4i/ � T˛ˇ : (5.130)

Regarding j „1i, for example, and if taking (5.36) into account we get

j „1i D 	
ŒT˛�11� j Q'A

1 i C ŒT˛�21� j Q'A
2 i
 	ŒTˇ�11� j Q'B

1 i C ŒTˇ�21� j Q'B
2 i
 :

(5.131)



226 5 Probability Experiments and Green’s Functions in Classical Event Spaces

This can be rewritten into

j „1i D ŒT˛�11 � ŒTˇ�11� j ‰1i C ŒT˛�11 � ŒTˇ�21� j ‰2i C
ŒT˛�21 � ŒTˇ�11� j ‰3i C ŒT˛�21 � ŒTˇ�21� j ‰4i : (5.132)

Thus we have

�
T˛ˇ

�
11

D ŒT˛�11 � ŒTˇ�11�
T˛ˇ

�
21

D ŒT˛�11 � ŒTˇ�21�
T˛ˇ

�
31

D ŒT˛�21 � ŒTˇ�11�
T˛ˇ

�
41

D ŒT˛�21 � ŒTˇ�21 ; (5.133)

and so on. The T-matrix (5.129) transforms also the amplitudes CnI n D 1; � � � ; 4
of a probability state vector given by

j  i D C1� j „1i C C2� j „2i C C3� j „3i C C4� j „4i (5.134)

into the new amplitudes QCnI n D 1; � � � ; 4 of its representation

j  i D QC1� j ‰1i C QC2� j ‰2i C QC3� j ‰3i C QC4� j ‰4i (5.135)

in terms of the new basis. That is,

0
BB@

QC1
QC2
QC3
QC4

1
CCA D T˛ˇ �

0
BB@

C1
C2
C3
C4

1
CCA (5.136)

holds. Moreover, (5.129) is again a unitary matrix, i.e.,

	
T˛ˇ


 tp � T˛ˇ D E ; (5.137)

where E represents the 4 � 4 unit matrix. The total Green’s function of the
probability experiment that fits into the scheme of Fig. 5.5 can again be derived from
ansatz (5.39) but with all quantities now defined in the product space. Replacing the
additional condition (5.40) by

lim
�!0

"
4X

iD1
h„i j Gt j „ii

#

tDtint��
D lim

�!0

"
4X

iD1
h„i j Gt j „ii

#

tDtintC�
(5.138)
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provides the elements

ŒW�nm .Nt; Qt/ D a

i
� e

i
a � Nƒn�Nt� i

a � Nƒm�Qt � ŒT˛ˇ�nm � ı.Nt � tint/ � ı.Qt � tint/

n;m D 1; � � � ; 4 (5.139)

of the corresponding interaction matrix. Thus we get finally for the Green’s function

Gt.t; t
0/ D i

a
� H.tint � t/ �

4X
n;mD1

ınm� j „n.t/i h„m.t
0/ j C

i

a
� H.t � tint/ �

4X
n;mD1

e � i
a �. Nƒm� Nƒn/�tint � ŒT˛ˇ�nm� j ‰n.t/i h„m.t

0/ j :

(5.140)

The first and second term on the right-hand side of (5.140) represent again the
part before and after the two local interactions on both sides of the probability
experiment. From (5.10), the Green’s function (5.140) for observation times t > tint,
and from the two subsources (5.90) and (5.91) we get the two time dependent
substates

j  1.t/i D 1p
2

�
4X

nD1
e � i

a .
Nƒ2� Nƒn/�tint � e � i

a
Nƒn�t � e

i
a

Nƒ2 �t00 � ŒT˛ˇ�n2� j ‰ni (5.141)

and

j  2.t/i D 1p
2

�
4X

nD1
e � i

a .
Nƒ3� Nƒn/�tint � e � i

a
Nƒn�t � e

i
a

Nƒ3�t00 � ŒT˛ˇ�n3� j ‰ni : (5.142)

Then, from definition (5.24) it follows

j  1i D
4X

nD1
QC.1/

n � j ‰ni D 1p
2

�
4X

nD1
ŒT˛ˇ�n2� j ‰ni (5.143)

j  2i D
4X

nD1
QC.2/

n � j ‰ni D � 1p
2

�
4X

nD1
ŒT˛ˇ�n3� j ‰ni (5.144)

for the corresponding time independent expressions. ŒT˛ˇ�n2 and ŒT˛ˇ�n3 are given
by (5.129) (i.e., the second and third column of the T-matrix). It should be mentioned
that the time dependence can again be avoided by the alternative procedure
described in Sect. 5.1.3 but with all quantities defined in the 4-dim. product space.
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In the final step we calculate the projections according to

j . 1/ni D j ‰nih‰n j  1i (5.145)

j . 2/ni D j ‰nih‰n j  2i ; n D 1; � � � ; 4 : (5.146)

It is then straightforward to see that the probabilities (5.114) and (5.115) are the
result of the sum of the scalar products

QC2
n D � QC.1/

n

�2 C � QC.1/
n

�2 D h. 1/n j . 1/ni C h. 2/n j . 2/ni ; n D 1; � � � ; 4
(5.147)

of these projections, as already discussed in conjunction with the classical proba-
bility experiment in the 2-dim. event space described in Sect. 5.1.2. Inserting these
probabilities into expression (5.104) for the correlation function results in

C.˛; ˇ/ D � cos 2˛ � cos 2ˇ (5.148)

(please, note that QC2
1 corresponds with c211, QC2

2 with c212, QC2
3 with c221, and QC2

4 with
c222). Since condition (5.108) holds for this correlation function we are never able
to violate the CHSH-inequality (5.105) by any such classical experiment with the
four different parameter configurations .˛; ˇ/, .˛; ˇ 0/, .˛0; ˇ/, and .˛0; ˇ 0/. To treat
each substate of the primary impressed source separately appears moreover justified
by the obvious fact that this source (the box Bp) generates only one of the two
possible pairs of events in a single step of this classical probability experiment. That
is, a single experimental step is related either to the upper or to the lower row of
the scheme depicted in Fig. 5.5. By the way, a similar procedure is known from
Helmholtz’ superposition theorem of electrical circuits. It states that the response
of a linear system to more than one independent sources is given by the sum of the
responses caused by each independent source acting alone.

The check of condition (5.96) reveals that the two substates (5.143) and (5.144)
are nonentangled. But on the other hand and according to our definition, these two
substates are now nondisjoint since having all the basis vectors j ‰ni in common.
We may therefore expect that the superposition of these two substates to the total
state

j  i D j  1i C j  2i D 1p
2

�
4X

nD1

	
ŒT˛ˇ�n2 � ŒT˛ˇ�n3


 � j ‰ni (5.149)

and the calculation of the probabilities

QC2
n D h n j  ni ; n D 1; � � � ; 4 (5.150)

from the projections

j  ni D j ‰nih‰n j  i ; n D 1; � � � ; 4 (5.151)
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result in probabilities which differ from these one given in (5.114) and (5.115). And
indeed, in so doing we end up with

c211 D c222 D 1

2
� sin2.˛ � ˇ/ (5.152)

c212 D c221 D 1

2
� cos2.˛ � ˇ/ : (5.153)

But these probabilities are not in agreement with our experience from the marble
experiment or any other experiment with classical objects that fits into the scheme
of Fig. 5.5! The corresponding correlation function reads

C.˛; ˇ/ D � cos 2.˛ � ˇ/ : (5.154)

Now there are parameter configurations .˛; ˇ/ for which the necessary condi-
tion (5.113) of the violation of the CHSH-inequality (5.105) holds! For example,
a maximum violation of the CHSH-inequality can be observed if the four different
parameter configurations

.˛; ˇ/ D
�
0;
�

8



(5.155)

.˛; ˇ 0/ D
�
0;
3�

8

�
(5.156)

.˛0; ˇ/ D
��
4
;
�

8



(5.157)

.˛0; ˇ 0/ D
�
�

4
;
3�

8

�
; (5.158)

are used. This provokes again the question we already ask at the end of Sect. 5.1.2:
Is there any experiment that would end up with these probabilities? And the answer
is “yes”, if using quantum objects like spin-entangled electrons, polarization-
entangled photons, etc.. These are the quantum mechanical Bell’s experiments. But,
unfortunately, performing a quantum mechanical Bell’s experiment is not as simple
as the classical counterpart experiment since it requires a much more sophisticated
equipment than boxes filled with certain numbers of differently coloured marbles.
The first real experiment with polarization-entangled photons was performed by A.
Aspect and co-workers in 1980, as mentioned in Sect. 1.3 of the Prologue. A. Aspect
and co-workers used a primary impressed source that emits pairs of polarization-
entangled photons produced by a calcium cascade source. Today, sources that are
based on parametric down-conversion are more common (see Zhu et al. (2012),
for example). The scheme of such an experiment is as follows: We tacitly assume
that there exists a source that emits two polarization-entangled photons (let us say
horizontally (h)- and vertically (v)-polarized with respect to a fixed but arbitrary
plane) into opposite directions in a single event. But we do not know the state of
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polarization of the photon emitted in a certain direction. That is, we do not know
if we have the combination (h,v) or (v,h) with respect to the polarization of both
photons in a single event. We only know that each pair is emitted with the probability
of 1=2! Let us further assume that a detector is mounted on each side that produces
a click if a h-polarized photon is detected. There will be no click otherwise. Without
any additional interactions on both sides we measure the probabilities (5.95). This
probability experiment can be described in exactly the same way used above for
the classical experiment if t < tint. But the situation changes if we place additional
polarizing filters on both sides the photons are interacting with. The orientation
of the polarizing filters with respect to a fixed plane (i.e., the angles ˛ and ˇ on
the left- and right-hand side) can be continuously varied between Œ0; ��. The local
interactions become in this way functions of the local parameters ˛ and ˇ. Finally,
the detectors are replaced by new detectors which act in such a way that a click is
produced if a photon is detected, independent of its state of polarization. There will
be no click otherwise. This experiment fits into the scheme of Fig. 5.5 and provides
the probabilities (5.152) and (5.153). In the last years there have been performed
several other experiments which confirm these probabilities although there are some
discussions about possibly existing loopholes in the experimental design. However,
the violation of the CHSH-inequality with corresponding quantum mechanical
experiments is accepted among most of the physicists in our days. To conclude
this discussion I want to emphasize again that the different probabilities obtained
in our experiment with the black and white marbles and the quantum mechanical
Bell’s experiment may be considered as a consequence of a necessary superposition
of the nonentangled but nondisjoint substates in the latter experiments and the
separate treatment of each substate in the former experiment. That is, the different
probabilities are traced back to a reason we encountered already in conjunction with
the double-slit experiment (see also the last section in the Prologue).

Let us now discuss another but not less interesting point of view on the
probability experiments considered in this chapter that provides us with another
explanation of the different probabilities. Introducing the normalized probability
states

j Q̂
1i WD

4X
nD1

ŒT˛ˇ�n2� j ‰ni (5.159)

j Q̂
2i WD �

4X
nD1

ŒT˛ˇ�n3� j ‰ni (5.160)

j Q̂
3i WD 1p

2
� Œj ‰2i C j ‰3i� (5.161)

j Q̂
4i WD 1p

2
� Œj ‰1i C j ‰4i� (5.162)
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will allow us to relate the following “statistical operator” to these experiment:

S WD
2=4X
iD1

pi� j Q̂ ii h Q̂ i j (5.163)

with weights pi given by

p1 D p2 D 1

2
(5.164)

p3 D � p4 D 2 � w.˛; ˇ/ ; (5.165)

and

w.˛; ˇ/ D sin ˛ � sinˇ � cos˛ � cosˇ : (5.166)

The upper summation index i D 2 belongs to the classical marble experiment, and
i D 4 is the upper summation index for the quantum mechanical Bell’s experiment.
j Q̂

1i and j Q̂
2i (these two states are identical with (5.143) and (5.144) but for the

prefactors 1=
p
2) as well as j Q̂

3i and j Q̂
4i are again orthogonal among each other.

Moreover,

2=4X
iD1

pi D 1 (5.167)

holds for the weights. Please, note the negative weight (negative quasi-probability)
p4! The measured probabilities (5.152) and (5.153) for any parameter configuration
.˛; ˇ/ are then the result of

c211 D h‰1 j S j ‰1i (5.168)

c212 D h‰2 j S j ‰2i (5.169)

c221 D h‰3 j S j ‰3i (5.170)

c222 D h‰4 j S j ‰4i ; (5.171)

Operator (5.163) may be called the “basic statistical operator” since it is related to
an experiment with a fixed parameter configuration ˛ and ˇ. On the other hand, if
we have a mixture of N such experiments (i.e., if different parameter configurations
.˛k; ˇk/ with k D 1; � � � ;N are considered) with weights rk,

PN
kD1 rk D 1, then we

can relate the following statistical operator to the mixture:

Smix D
NX

kD1
rk � Sk D

NX
kD1

2=4X
iD1

rk � p.k/i � j Q̂ .k/
i i h Q̂ .k/

i j : (5.172)
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Regarding the statistical operator (5.163) the question of the linear independence of
the normalized probability states j Q̂ ii is of some importance. If this happens, then
we are able to represent any probability state of our 4-dim. event space by a linear
combination of these vectors. To prove the linear independence we have to consider
Grams’ matrix

Gr D h Q̂ i j Q̂ ji I i; j D 1; � � � ; 4 : (5.173)

Because of (5.159)–(5.162) this matrix is a symmetric one,

Gr D

0
BB@
1 0 g1 g2
0 1 �g1 g2
g1 �g1 1 0

g2 g2 0 1

1
CCA (5.174)

with elements g1 and g2 given by

g1 D 1p
2

� cos.˛ C ˇ/ (5.175)

g2 D 1p
2

� sin.˛ � ˇ/ : (5.176)

Its determinant reads

det .Gr/ D 8p
2

� w.˛; ˇ/ (5.177)

with w.˛; ˇ/ according to (5.166). Thus we have to meet the condition

w.˛; ˇ/ ¤ 0 (5.178)

to ensure the linear independence of the vectors (5.159)–(5.162). On the other hand,
if

w.˛; ˇ/ D 0 (5.179)

holds (this happens if we have .˛ D 0 or �=2; ˇ ¤ 0/ or .˛ ¤ 0; ˇ D
0 or �=2/), both weights p3 and p4 are identical zero. If calculating the probabilities
only from the two states j Q̂

1i and j Q̂
2i (i.e., if restricting the summation

in (5.163) to
P2

iD1!) we get the probabilities (5.114) and (5.115) of the marble
experiment. The two states j Q̂

3i and j Q̂
4i can therefore be considered to

represent the interference contribution that results from the superposition of the two
substates (5.143) and (5.144). From (5.163) we can see moreover that j Q̂

3i acts
as a “source state”. That is it adds a certain amount to the probabilities c212 and c221
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calculated from the states j Q̂
1i and j Q̂

2i. Contrary, j Q̂
4i acts as a “sink state”

since it removes the same amount from the probabilities c211 and c222 calculated from
the states j Q̂

1i and j Q̂
2i. A similar behaviour was already discussed in Chap. 4 in

conjunction with the interaction of a linearly polarized plane wave with a polarizing
filter (see the discussion subsequent to Eq. (4.80)).



Chapter 6
Outlook or Something Like an End

The best end is an end that provokes a new beginning

Congratulation! We (i.e., the readers who followed me up to this point and the
author himself) have reached the last chapter of this book. Based on the results
of the second and third chapter this final chapter is aimed at providing a short and
fragmented look at relations between some of the classical Green’s functions derived
so far, and some of the Green’s functions used in Quantum Mechanics. We start with
a relation between the Green’s function of a free point mass derived in the second
chapter, the Green’s function of the diffusion- or heat transfer equation derived in the
third chapter, and the free particle Green’s function of the Schrödinger equation. To
this end, we will employ again the Fourier transform method described in Sect. 3.4.
We want to discuss further the issue of the transfer of this relation to other problems.
This will lead us to a relation between the Fokker-Planck- and Schrödinger equation.
A relation between the Green’s function of the Klein-Gordon- and Dirac equation
is discussed finally. All these considerations are restricted to the 1-dim. case. They
provide only a first aid kit for those readers who want to get deeper into the Green’s
function formalism used in Quantum Mechanics, Quantum Statistics, or in Quantum
Field Theory. However, a more thoroughly treatment of these nonclassical fields by
use of Green’s functions is outside the scope of this book and would be a project of
its own.

6.1 Classical Free Point Mass and Green’s Function
of the Diffusion Equation

To spare the reader the burden of going back and forth in this book let us write down
the relevant equations from the foregoing chapters.

G .PM/
tt .t; t0/ D 1

m
� ı.t � t0/ (6.1)

was the equation of motion for the Green’s function of a free point mass (please,
note again the shorter notation used for the twofold derivative with respect to time).
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T. Rother, Green’s Functions in Classical Physics, Lecture Notes
in Physics 938, DOI 10.1007/978-3-319-52437-5_6

235



236 6 Outlook or Something Like an End

Its solution was given by

G .PM/.t; t0/ D F.t; t0/ � H.t � t0/ ; (6.2)

where

F.t; t0/ D .t � t0/
m

(6.3)

was representing a special solution of the corresponding homogeneous equation

Ftt.t; t
0/ D 0 : (6.4)

H.t � t0/ is the Heaviside function.

a2 � G .D/
t .x; tI x0; t0/ � G .D/

xx .x; tI x0; t0/ D � ı.x � x0/ � ı.t � t0/ : (6.5)

was the 1-dim. diffusion equation. Its solution was given by

G .D/.x; tI x0; t0/ D F .D/.x; tI x0; t0/ � H.t � t0/ : (6.6)

Starting from the 1-dim. equation of telegraphy, it was derived from the limiting
situation of an assumed infinitely large velocity of light.

F .D/.x; tI x0; t0/ D 1p
4 � a2 .t � t0/

� e
� a2

4
� .x � x0/2

.t � t0/ (6.7)

was again a special solution of the corresponding homogeneous equation

a2 � F .D/
t .x; tI x0; t0/ � F .D/

xx .x; tI x0; t0/ D 0 : (6.8)

Is there any relation between these two Green’s functions? To answer this
question we have to go back to the action defined in (2.2). From the Lagrangian
of the free particle we thus get

W.x; tI x0; t0/ D .x � x0/2

2F.t; t0/
(6.9)

with F.t; t0/ according to (6.3). This allows as to write instead of (6.6)

G .D/.x; tI x0; t0/ D 1p
4 � m a2 F.t; t0/

�e � a2

2m
� W.x; tI x0; t0/ �H.t�t0/ : (6.10)
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F.t; t0/ in the square root of the denominator and in the function (6.9) of the action
establishes a link between the Green’s function of the 1-dim. diffusion equation and
the special solution (6.3) of the Green’s function of the free point mass.

Now we want to apply the Fourier transform method to derive the Green’s
function of the diffusion equation once again. Using ansatz (3.216) for the Green’s
function and (3.215) for Dirac’s time dependent delta function it follows from
Eq. (6.5)

� i! a2 � G .D/.x; x0I!/ � G .D/
xx .x; x

0I!/ D � ı.x � x0/ : (6.11)

Assuming that we know the continuous or discrete number of eigenvalues kn and
the related eigenfunctions 'n.x/ of the eigenvalue problem

� Œ'n.x/�xx � kn � 'n.x/ D 0 (6.12)

we can approximate the unknown quantity G .D/.x; x0I!/ by the series expansion

G .D/.x; x0I!/ D
ZX

n

Gn.x
0; !/ � 'n.x/ dk : (6.13)

On the right-hand side of (6.11) we use the completeness relation

ı.x � x0/ D
ZX

n

' �
n .x

0/ � 'n.x/ dk (6.14)

of Dirac’s delta function ı.x � x0/. This results in

Gn.x
0; !/ D 1

ia2
� ' �

n .x
0/

! C i
kn

a2

(6.15)

for the unknown expansion coefficients in (6.13). The poles are located on the
negative imaginary axis of the complex !-plane. Inserting (6.13) with (6.15)
into (3.216) and taking into account that we have to close the path of integration
in the lower complex !-plane at infinity (see the discussion in Sect. 2.5.3 in
conjunction with the Kramers-Kronig relation) gives

G .D/.x; tI x0; t0/ D 1

a2

ZX
n

e
� kn

a2
� .t � t0/ � ' �

n .x
0/ � 'n.x/ dk : (6.16)

Fortunately, regarding the problem at hand we know the continuous eigenvalues and
the corresponding eigenfunctions of (6.12). The eigenvalues are kn D k2, and

'n.x/ D 1p
2�

� e ikx (6.17)
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are the related eigenfunctions. Equation (6.16) reads therefore

G .D/.x; tI x0; t0/ D 1

2�a2

Z 1

�1
e

� k2

a2
� .t � t0/ C ik.x � x0/

dk : (6.18)

By means of completing the square this expression can be reformulated as follows:

G .D/.x; tI x0; t0/ D 1

2�a2
� e

� a2

4
� .x � x0/2

.t � t0/ �

Z 1

�1
e

� i
.t � t0/

ia2
�
�

k � ia2

2
� .x � x0/
.t � t0/

�2
dk : (6.19)

Substituting

Q� D k � ia2

2
� .x � x0/
.t � t0/

(6.20)

and taking the Gaussian integral

Z 1

�1
e � i � Q�2 d Q� D

��
i�


1=2
(6.21)

into account results finally in expression (6.7) of the Green’s function of the 1-dim.
diffusion equation.

Now, let us once again derive our pivotal relation for solving the equation

a2 �  .D/
t .x; t/ �  .D/

xx .x; t/ D � �.x; t/ (6.22)

which is of our actual interest. Its derivation can be accomplished in close analogy
to the way described in Sect. 3.2.3 in conjunction with the general solution of the 1-
dim. wave equation. But, now, only a single derivative with respect to time must be
considered. As a consequence and due to Reciprocity with respect to time the adjoint
equation with a negative sign in front of the term with the time derivative must be
used, as frequently practiced in the second chapter in the presence of friction. We
start therefore from the equations

a2 �  .D/
t0 .x0; t0/ �  

.D/
x0x0 .x0; t0/ D � �.x0; t0/ (6.23)

and

� a2 � G .D/
t0 .x; tI x0; t0/ � G .D/

x0x0 .x; tI x0; t0/ D � ı.x � x0/ � ı.t � t0/ : (6.24)
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In the next step we consider the integral expression

Z
dx0 dt0

n
 .D/.x0; t0/ �

h
�a2 � G .D/

t0 .x; tI x0; t0/ � G .D/
x0x0 .x; tI x0; t0/

i

� G .D/.x; tI x0; t0/ �
h
a2 �  .D/

t0 .x0; t0/ �  
.D/

x0x0 .x0; t0/
io

: (6.25)

This gives

Z
dx0 dt0 f� � � g D � .D/.x; t/ C

Z
dx0 dt0 G .D/.x; tI x0; t0/ � �.x0; t0/ (6.26)

(note that its left-hand side is identical with (6.25)). On the other hand, if applying
Green’s theorem to (6.25), and from the requirements of homogeneous boundary
conditions with respect to the spatial boundaries and Causality with respect to time
we get

 .D/.x; t/ D
Z

dx0 dt0 G .D/.x; tI x0; t0/ � �.x0; t0/

C a2 �
Z

dx0 G .D/.x; tI x0; t0/ �  .D/.x0; t0/ : (6.27)

Inhomogeneous spatial boundary conditions would result in additional contributions
on the right-hand side which can alternatively be expressed by corresponding
sources, as already demonstrated in conjunction with the general solution of the
wave equation. This holds also for the second term on the right-hand side of (6.27).
It may be considered to be the result of the source

�.x0; t0/ D a2 �  .D/.x0/ � ı.t0/ (6.28)

acting at the initial time t0 D 0. With this understanding we arrived at our
pivotal relation (3.1). Relation (3.1) together with the source (6.28) and the general
condition

G.x; tI x0; t0/ D 0 I t < t0 (6.29)

for the Green’s function provide a causal relation between the initial state  .x0; t0 D
0/ and the state  .x; t/ at a later time t > 0. It is exactly this structure that allows
us to establish a link to Quantum Mechanics. Let us therefore consider the Green’s
function related to the Schrödinger equation of a free quantum particle.
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6.2 Schrödinger Equation of the Free Particle and Green’s
Function

The Green’s function of the Schrödinger equation in Quantum Mechanics—also
referred to as a “propagator”— is often introduced via the relation

 .x; t/ D
Z 1

�1
dx0 G .S/.x; tI x0; t0/ �  .x0; t0/ (6.30)

between the quantum state  .x0; t0/ at a certain initial time t0 and the quantum
state  .x; t/ at a later time t > t0 (see Müller-Kirsten (2006), Chap. 21 therein,
for example). But we have just seen that this causal relation can be understood as
the result of the underlying equation with only a single derivative with respect to
time and an appropriate source. This will now be demonstrated for the Schrödinger
equation of a Nonrelativistic, Forceless, Spinless, and Mass-carrying quantum
particle (a “NFSM-quantum particle”) given by

� i„ �  t.x; t/ � „2
2m

�  xx.x; t/ D � �.x; t/ : (6.31)

In contrast to the conventional formulation one can find in textbooks, a source is
already introduced on the right-hand side of this equation. It is to be understood as
an impressed source that generates the initial state. The corresponding equation of
the Green’s function reads

� i„ � G .S/
t .x; tI x0; t0/ � „2

2m
� G .S/

xx .x; tI x0; t0/ D � ı.x � x0/ � ı.t � t0/ : (6.32)

There is an obvious analogy to the diffusion equation. The same method as described
in the foregoing Sect. can be applied to solve this equation. But due to the different
prefactors, instead of expression (6.16) it now follows

G .S/.x; tI x0; t0/ D � 1

i„
ZX

n

e
� i

„ kn .t � t0/ � ' �
n .x

0/ � 'n.x/ dk ; (6.33)

from ansatz (6.13). The eigenvalues are given by

kn D „2 k2

2m
: (6.34)

In the course of deriving (6.33) we have to take moreover into account that the poles
of the corresponding expression (6.15) are now real-valued. It is therefore helpful
to add a “�i�” to shift these poles into the direction of the negative imaginary axis.
This will allow us to close the path of integration of the inverse transformation at
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infinity in the lower complex !-plane (please, remember that a similar trick was
already applied in Sect. 2.1.4 to derive the Green’s function of the simple harmonic
oscillator). Equation (6.33) is then obtained from the residual theorem, and if � is
finally set to zero. From (6.34) and the eigenfunctions (6.17) we thus get

G .S/.x; tI x0; t0/ D 1

2�.�i„/
Z 1

�1
e

� ik2
„
2m

� .t � t0/ C ik .x � x0/
dk :

(6.35)

The integral can again be solved by completing the square. But we can also benefit
from the analogy to the diffusion equation. Comparing (6.18) and (6.35) we find
that

G .S/.x; tI x0; t0/ D a2

.�i„/ � G .D/.x; tI x0; t0/ (6.36)

holds if

a2 D 2m

i„ (6.37)

is used. And with (6.36) and (6.37) we can moreover transform the equation (6.32)
of the Green’s function of the Schrödinger equation into the equation (6.5) of the
Green’s function of the diffusion equation. Looking at (6.10) the Green’s function
of the NFSM-quantum particle reads therefore

G .S/.x; tI x0; t0/ D 1

.�i„/ � 1p
2 � i „ F.t; t0/

�e
i

„ � W.x; tI x0; t0/ �H.t�t0/ ; (6.38)

where F.t; t0/ and W.x; tI x0; t0/ are again given by the classical expressions (6.3)
and (6.9)! Except for the prefactor 1=.�i„/, expression (6.38) agrees with that one
known from the literature. But this prefactor vanishes if we ask for the solution of
equation (6.31) which is of our actual interest. Application of Green’s theorem in
exactly the same way as described in the foregoing section provides

 .x; t/ D
Z

dx0 dt0 G .S/.x; tI x0; t0/ � �.x0; t0/

� i„
Z

dx0 G .S/.x; tI x0; t0/ �  .x0; t0/ (6.39)

with G .S/.x; tI x0; t0/ given by (6.38). The second term on the right-hand side can be
considered as a result of the impressed source

�.x0; t0/ D � i„ �  .x0/ � ı.t0/ (6.40)



242 6 Outlook or Something Like an End

if the initial time is set to t0 D 0. The resulting solution agrees with the
definition (6.30) of a Green’s function without the prefactor 1=.�i„/. The restriction
of (6.39) to the first term on the right-hand side together with the impressed
source (6.40) is precisely what I called the “source picture” of Quantum Mechanics
in the Prologue (see the end of Sect. 1.3). According to the point of view on
physics formulated in the Prologue, the Green’s function (6.38) provides a complete
characterization of the abstract object “NFSM-quantum particle” and avoids the
recourse to the uncertainty relation between momentum and position.

To summarize the procedure we can use to determine the Green’s function of the
Schrödinger equation (6.32): We multiply the special solution (6.7) of the classical
diffusion equation by a2=.�i„/, and replace a2 afterwards by 2m=i„. Multiplication
by the Heaviside function H.t � t0/ provides the Green’s function. This raises the
question if this simple procedure can also be applied to other problems in Quantum
Mechanics?

6.3 Classical Fokker-Planck Equation and Schrödinger
Equation

To answer this question let us go back to Eq. (6.10). We want to find out the
condition for

F .FP/.x; tI x0; t0/ D 1p
4 � m a2 F.t; t0/

� e
� a2

2m
� W.x; tI x0; t0/

(6.41)

with the more general expression

W.x; tI x0; t0/ D 1

2F.t; t0/
� �.x2 C x0 2/ � m � Ft.t; t

0/ � 2 x x0� (6.42)

of the action being the solution of the homogeneous Fokker-Planck equation

a2 � F .FP/
t .x; tI x0; t0/ � F .FP/

xx .x; tI x0; t0/

� a4

2m
� V.x/ � F .FP/.x; tI x0; t0/ D 0 (6.43)

for time independent potentials V.x/. This special Fokker-Planck equation is of our
interest here since it can be transformed into the Schrödinger equation

.�i„/ � F .S/
t .x; tI x0; t0/ � „2

2m
� F .S/

xx .x; tI x0; t0/

C V.x/ � F .S/.x; tI x0; t0/ D 0 (6.44)
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for time independent potentials V.x/ by assuming the relation

F .S/.x; tI x0; t0/ D a2

.�i„/ � F .FP/.x; tI x0; t0/ (6.45)

between the solutions of these two equations. Please, note that this relation agrees
with the former relation (6.36). The Fokker-Planck equation becomes identical with
the diffusion equation if V.x/ D 0. Insertion of (6.41) into (6.43) results in

0 D � 1

2
p
4 � m a2 F.t; t0/

� e
� a2

2m
� W.x; tI x0; t0/ �

�
Ft.t; t0/
F.t; t0/

C a2

m
� Wt.x; tI x0; t0/ � 1

m
� Wxx.x; tI x0; t0/

C a2

m
�
�

W 2
x .x; tI x0; t0/
2m

C V.x/

��
: (6.46)

Because of (6.42) we have the identity

Ft.t; t0/
F.t; t0/

� 1

m
� Wxx.x; tI x0; t0/ D 0 : (6.47)

Equation (6.46) then becomes

0 D � a2

2m
� 1p

4 � m a2 F.t; t0/
� e

� a2

2m
� W.x; tI x0; t0/ �

�
Wt.x; tI x0; t0/C W 2

x .x; tI x0; t0/
2m

C V.x/

�
: (6.48)

The expression in the square brackets is nothing but the well-known Hamilton-
Jacobi partial differential equation of the action. It is identical zero in the presence
of conservative potentials. Equation (6.41) is therefore a solution of (6.43) for the
corresponding potentials V.x/. We will now use this knowledge to determine the
Green’s function of the object “quantum mechanical harmonic oscillator”.

We start from the classical expressions of the simple harmonic oscillator derived
already in the second chapter.

G .O/
tt .t; t0/ C !2 � G .O/.t; t0/ D 1

m
� ı.t � t0/ (6.49)
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was the equation of motion of the related Green’s function. Its solution was given
by

G .O/.t; t0/ D F .O/.t; t0/ � H.t � t0/ ; (6.50)

where

F .O/.t; t0/ D sin!.t � t0/
m!

: (6.51)

was again a special solution of the corresponding homogeneous equation

F .O/
tt .t; t0/ C !2 � F .O/.t; t0/ D 0 : (6.52)

From (6.42) we get the following expression for the action of the simple harmonic
oscillator:

W .O/.x; tI x0; t0/ D m!

2 sin!.t � t0/
� �.x2 C x0 2/ � cos!.t � t0/ � 2 x x0� : (6.53)

Applying the procedure described at the end of the foregoing section we thus get
the Green’s function

G .S/.x; tI x0; t0/ D 1

.�i„/ � 1p
2 � i „ F .O/.t; t0/

� e

i

„ � W .O/.x; tI x0; t0/ � H.t � t0/ (6.54)

of the quantum mechanical harmonic oscillator in a straightforward way. Except
for the prefactor 1=.�i„/, expression (6.54) is well-known from the literature. The
Green’s function (6.38) of the NFSM-quantum particle results from ! D 0. In
Parker and Petrosian (1995), for example, one can find the Green’s function of
the Fokker-Planck equation for a large number of other conservative potentials.
However, the knowledge of the solution F.t; t0/ of the corresponding homogeneous
equations is a necessary precondition to benefit from the above procedure.

In certain cases, if the particle in a box model with impenetrable barriers at either
end is considered, for example, expression (6.33) becomes

G .S/.x; tI x0; t0/ D � 1

i„
X

n

e
� i

„ En .t � t0/ � ' �
n .x

0/ � 'n.x/ : (6.55)

The infinitely-countable number of energy values En and the related eigenfunctions
'n.x/ are again the solutions of the corresponding eigenvalue problem we have to
solve in conjunction with the Fourier transform method. Such a representation is
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also known for the Green’s function (6.54) of the quantum mechanical harmonic
oscillator. The characteristic eigenvalues and normalized eigenfunctions are in this
case given by

En D „!
�

n C 1

2

�
I n D 0; 1; � � � (6.56)

and

'n.x/ D
�m!

�„

 1=4 � 1p

2nnŠ
�ˆn.�/ � e � �2=2 : (6.57)

ˆn.�/ are the Hermitian polynomials with

� D
r

m!

„ � x : (6.58)

It is interesting to note that this representation can be derived from (6.54) if the
trigonometric relations

sin!.t � t0/ D 1

2i
e i!.t�t0/

�
1 � e �2i!.t�t0/



(6.59)

cos!.t � t0/ D 1

2i
e i!.t�t0/

�
1 C e �2i!.t�t0/



(6.60)

are used, and if an appropriate series expansion is applied to the exponential
functions afterwards. This was demonstrated by Feynman and Hibbs in (Feynman
and Hibbs 1965) in the context of the path integral formulation of Quantum
Mechanics. Unfortunately, this is impossible for the Green’s function of the classical
Fokker-Planck equation (6.43) that considers the same potential.

Taking the square of (6.54),

ˇ̌
.i„/ � G .S/.x; tI x0; t0/

ˇ̌2 D m!

2�„ sinŒ!.t � t0/�
; (6.61)

provides the “transition probability” of detecting the quantum object at time t in
position dx around x if its initial position at time t0 < t is given by dx0 around x0.
The corresponding transition probability for the NFSM-quantum particle considered
before results from (6.61) if ! D 0. But the more common interpretation that
is associated with conventional Quantum Mechanics results from the representa-
tion (6.55)–(6.57). According to the point of view formulated in the Prologue,
this representation provides also a complete physical characterization of the object
“quantum mechanical harmonic oscillator”. Inserting (6.55) and the source (6.40)
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into the first term on the right-hand side of (6.39) gives

 .x; t/ D
X

n

an � e
� i

„ En t � 'n.x/ : (6.62)

an D
Z
 .x0/ � ' �

n .x
0/ dx0 (6.63)

are the complex-valued expansion coefficients, in general. The state (6.62) is
normalized to unity,

Z
 �.x; t/ �  .x; t/ dx D 1 ; (6.64)

so that

X
n

a2n D 1 (6.65)

holds. The resulting a2n are then the probabilities to measure the energy value En

in a corresponding experiment if the quantum mechanical harmonic oscillator was
prepared before to be in state  .x; t/. The time dependence that appears in (6.62)
is washed out by taking its square. This is the same interpretation we mentioned
already in the foregoing chapter to calculate the probabilities from the probability
states in classical event spaces, in the absence of additional stochastic interactions.
Using again the conventional “bra-ket”- formulation, and with the definitions

j 
n.x; t/i WD e
� i

„ En t � 'n.x/ (6.66)

and

h f .x; t/ j g.x; t/i WD
Z

f �.x; t/ � g.x; t/ dx (6.67)

the corresponding “source picture” reads

j  .x; t/i D OG .S/.x; tI x0; t0/ j �.x0; t0/i (6.68)

with the source j �.x0; t0/i and the Green’s function given by (6.40) and

OG .S/.x; tI x0; t0/ D � 1

i„
ZX

n

j
n.x; t/ >< 
n.x
0; t0/j dk : (6.69)
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There exists another function—the so-called “spectral function”—which is of
some importance in Quantum Statistics, and which is strongly related to the Green’s
function. Let us have a very short and incomplete look at this function. In this
context it should be first mentioned that, if x D x0 is used in (6.55), and if integration
with respect to x is performed, the introduction of the complex time difference

.t � t0/ D � i „ˇ (6.70)

with

ˇ D 1

kB T
(6.71)

allows one to establish a link to the partition function

Z D
X

n

e
� En

kB T ; (6.72)

and, therefore, to equilibrium problems in Quantum Statistics. kB represents the
Boltzmann constant, and T denotes the temperature. This complex time technique
results in the so-called “Matsubara representation” of the Green’s functions. The
equation of motion of the Fourier transform of these Green’s functions are governed
by the Dyson equation. This approach is similar to what was discussed in Sect. 2.5.2,
and in conjunction with the Fourier transform method in the third chapter. Let us
therefore ask for the structure of the spectral function A.!/, introduced by

G .S/.x; tI x0; t0/ D
Z 1

�1
d!

2�
A.!/ � e � i! .t � t0/ ; (6.73)

that results in the representation (6.55). Applying the Fourier transform method
to the Green’s function of the Schrödinger equation of the quantum mechanical
harmonic oscillator gives at first

�„! G.x; x0I!/� „2
2m

Gxx.x; x
0; !/C m!2

2
x2 G.x; x0; !/ D � ı.x�x0/ (6.74)

in the Fourier transform domain with respect to the time. Solving the corresponding
eigenvalue problem

� „2
2m

Œ'n.x/�xx C m!2

2
x2 'n.x/ D En 'n.x/ (6.75)
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results in the series expansion

G.x; x0I!/ D 1

„
X

n

' �
n .x

0/ � 'n.x/

! � En=„ : (6.76)

En are the eigenvalues (6.56), and 'n.x/ are the related eigenfunctions (6.57). If the
spectral function is now defined by

A.!/ WD � lim
�!0

�
G.x; x0I! C i�/ � G.x; x0I! � i�/

�
; (6.77)

we get from (6.76) and Dirac’s identity

lim
�!0

1

! ˙ i�
D pv

�
1

!

�
� i� ı.!/ (6.78)

(please, note that “pv” denotes the principal value) the expression

A.!/ D 2 � i

„
X

n

ı.! � En=„/ � ' �
n .x

0/ � 'n.x/ : (6.79)

Inserting this spectral function into (6.73) results actually in representation (6.55).
It should be mentioned that definition (6.77) of the spectral function differs in the
prefactor “�i” from its usual definition

A.!/ WD i lim
�!0

�
G.x; x0I! C i�/ � G.x; x0I! � i�/

�
(6.80)

in Quantum Statistics. This is a consequence of the additional prefactor “i=„” in the
Green’s function (6.55) that disappears only in combination with the source (6.40).
Both the Green’s function (6.55) as well as the spectral function (6.79) provide a
complete characterization of the idealized object “quantum mechanical harmonic
oscillator”. In Quantum Statistics the spectral function results from the so-called
“causal Green’s function”. It is closely related to the correlation- and thermody-
namic functions and provides a complete characterization of the idealized object
“quantum mechanical ensemble” (canonical, grand-canonical, etc.) in the case of
Hermitian Hamilton operators. For example, the spectral function that is calculated
from the causal Green’s function of a grand-canonical ensemble of interaction-free
Fermion particles results in the Fermi distribution function for the average number
of particles in a certain energy state. The equation of motion of the causal one-
particle Green’s function is the so-called Dyson-Schwinger equation that relates the
one-particle Green’s function to the two-particles Green’s function, and so on. It
allows the incorporation of interaction processes to describe the influence of the
environment on the eigenvalues and the decay of probabilities of single states, for
example. But, unfortunately, in most of these cases the Hermitian character of the
Hamiltonian, and, as a consequence, the simple structure (6.79) of the spectral
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function get lost. But let us stop the discussion at this point. The interested reader
can find a very good and detailed treatment of these methods in Kadanoff and Baym
(1962), and an application of this method to different problems in the physics of
charged particle systems in Kraeft et al. (1986), for example.

6.4 A Relation Between the Green’s Functions
of the Klein-Gordon- and Dirac Equation

It was demonstrated in Sect. 2.5.1 how to decompose the equation of motion for the
Green’s function of the simple harmonic oscillator—a second-order equation in its
time derivative—into two differential equations of first order, and how to combine
the solutions of these two equations to the Green’s function of the simple harmonic
oscillator. Moreover, relation (2.208) between the Green’s function of one of the
first-order equations and the Green’s function of the second-order equation was
formally derived. Such a decomposition of a second-order equation was an essential
idea of Dirac in the course of deriving a relativistic equation of massive spin-1=2
particles like electrons—the Dirac equation, as it is called today. In the early efforts
undertaken in Quantum Mechanics to find a relativistic alternative to Schrödinger’s
wave equation the Klein-Gordon equation was considered as a potential candidate.
This happened because time and position are treated equally in this equation. The
derivatives are both of second order. But due to the second-order time derivative of
this equation a problem arises with the formulation of an equation of continuity for
the probability  �  . In contrast, this can be accomplished without any problems
by use of Schrödinger’s equation with only a first-order time derivative. It was a
bright idea of Dirac to decompose the Klein-Gordon equation into two first-order
equations with respect to the time and space. In so doing, Dirac was also able to
solve the problem of the spin-orbit interaction in the hydrogen atom. The original
paper (Dirac 1928) is highly recommended for those readers who may be interested
in a detailed discussion of the problems which forces Dirac to seek for a better
quantum mechanical treatment of the hydrogen atom.

The decomposition of the Klein-Gordon equation into two first-order equations
as well as the derivation of a relation between the Green’s function of the Dirac- and
Klein-Gordon equation similar to that one given by (2.208) will be demonstrated in
what follows. For the sake of simplicity and to give only a very first impression of
the idea behind Dirac’s equation these derivations are restricted to the 1-dim. case.
Any quantum mechanical considerations are moreover avoided. As I mentioned at
the beginning: A more thoroughly treatment of the aspects touched in this chapter
would be a book of its own. To start with, let us write down the Klein-Gordon
equation (3.62) once again but in a somewhat different form:

�
1

c2
� @2t � @2x C a2

c2

�
G .KG/.x; tI x0; t0/ D ı.x � x0/ � ı.t � t0/ : (6.81)
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The differential operator of second order in the brackets on the left-hand side shall
now be decomposed into two operators each of which contains only first-order
derivatives with respect to time and space. This can be accomplished by choosing
the following ansatz for these operators:

OL1 D 1

c
@t � ˛ � @x � i

a

c
� ˇ (6.82)

and

OL2 D 1

c
@t C ˛ � @x C i

a

c
� ˇ : (6.83)

˛ and ˇ are so far unknown quantities. They will be derived from the requirement
that

OL2 OL1 D 1

c2
� @2t � @2x C a2

c2
(6.84)

must hold. Because of

OL2 OL1 D 1

c2
@2t � ˛2 � @2x C a2

c2
� ˇ2 � i

a

c
� Œˇ ˛ C ˛ ˇ� (6.85)

the relations

˛2 D 1

ˇ2 D 1

ˇ ˛ C ˛ ˇ D 0 (6.86)

must hold for these quantities. The fulfilment of these relations is obviously
impossible in the realm of complex numbers. But, interestingly, this is possible if ˛
and ˇ are allowed to represent the two matrices A and B given by

A D
�
0 1

1 0

�
(6.87)

B D
�
1 0

0 �1
�
: (6.88)

These matrices are nothing but two of Pauli’s spin matrices. With E representing the
2 � 2 unit matrix we thus get

OL1 D 1

c
E � @t � A � @x � i

a

c
B (6.89)
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and

OL2 D 1

c
E � @t C A � @x C i

a

c
B (6.90)

for the two first-order operators. If the equation for the Green’s function G .D/ of the
“1-dim. Dirac equation” is defined by

OL2 G .D/.x; tI x0; t0/ D E � ı.x � x0/ ı.t � t0/ (6.91)

we are able to calculate this Green’s function from the Green’s function (3.68) of
the 1-dim. Klein-Gordon equation according to

G .D/ D OL1 G .KG/.x; tI x0; t0/ D�
1

c
E � @t � A � @x � i

a

c
B
�

G .KG/.x; tI x0; t0/ ; (6.92)

as already demonstrated for the Green’s function of the simple harmonic oscillator in
Sect. 2.5.1. Is there any classical experiment that can be described by this equation?
To find an answer to this question is liberally left to the reader!



Appendix

This Appendix provides 3 simple routines which can be used as starting points
for solving the numerical exercises formulated in Chaps. 4 and 5. The following
software packages have been used:

• Python Release 3.4.4
• NumPy Release 1.11.0
• SciPy Release 0.18.0
• Matplotlib Release 1.5.1

All these packages are Open Source (see http://www.opensource.org for more
details) and available for different operating systems. One can simply copy these
files into an appropriate editor (Spyder for Python 3.4, for example) to run the
programs. Or one can get the original Python files from the author on request
(please, mail to: tom.rother@dlr.de).

A.1: Program “ssl_vs_dsl_e.py” and Module “slbasics_e.py”

These two programs refer to the exercise at the end of Sect. 4.2.1. To run the main
program “ssl_vs_dsl_e.py”, module “slbasics_e.py” must be imported and copied
to the working directory. This module can simply be extended beyond the triple-slit
to solve the last part of the exercise.
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   #      ssl_vs_dsl_e.py

   # Intensity distribution in the far field of a single- and double slit 
   # (note, that double-slits with identical slit width are considered!)

   print()
   print()
   print("     Intensity distribution of a single- and double-slit!")
   print()
   print()

   import numpy as np
   import slbasics_e as slb
   import matplotlib.pyplot as plt

   # Input slit width "s1", slit distance "d", and size parameter "ks1":

   s1 = float(input('slit width s1: '))
   s2 = s1
   d = float(input('slit distance d: '))
   ks1 = float(input('size parameter ks1: '))

   # Calculation of the intensity distribution:

   alpha = np.linspace(-50.0, 50.0, 1000)
   y1 = slb.ssl(s1, ks1, alpha)
   y2 = slb.dsl(s1, s2, d, ks1, alpha)

   # Plotting the results as a function of \alpha 
   # (forward direction: alpha = 0):

   plt.plot(alpha,y1,linewidth=2.0, label="ssl")
   plt.plot(alpha,y2,linewidth=2.0, label="dsl")
   plt.legend()
   plt.xlabel("alpha [deg]")
   plt.ylabel("intensity")
   plt.show()

   ############## End of the main program ###############

   #          slbasics_e.py

   # Python module with routines to calculate the intensity distribution 
   # in the far field of a single-, double-, and tiple -slit! Must be imported 
   # in the main program!

   import numpy as np
   from scipy import sin, exp, pi

   # Function to calculate the intensity distribution of a single slit.
   # Parameter: slit width "s1"; size parameter "ks1", and angle "\alpha".
   # Slit "s1" is located symmetrically with respect to the x-axis.

   def ssl(s1, ks1, alpha):
       k = ks1 / s1
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       Gam_s1 = k * s1 / 2 * sin(alpha * pi / 180)
       z1 = 0 + 1.0j
       ss1 = z1 * (k * s1 / 2 / pi) * sin(Gam_s1) / Gam_s1
       intensity = ss1 * np.conj(ss1)
       intensity = np.real(intensity)
       return intensity

   # Function to calculate the intensity distribution of a double-slit.
   # Parameter: slit width "s1", "s2"; slit distance "d"; size parameter 
   # "ks1", and angle "\alpha".

   def dsl(s1, s2, d, ks1, alpha):
       k = ks1 / s1
       Gam_s1 = k * s1 / 2 * sin(alpha * pi / 180)
       Gam_s2 = k * s2 / 2 * sin(alpha * pi / 180)
       Gam_d = k * d / 2 * sin(alpha * pi / 180)
       z1 = 0 + 1.0j
       z2 = z1 * (Gam_d + Gam_s1)
       z3 = z1 * (Gam_d + Gam_s2)
       ss1 = z1 * (k * s1 / 2 / pi) * sin(Gam_s1) / Gam_s1 * exp(-z2)
       ss2 = z1 * (k * s2 / 2 / pi) * sin(Gam_s2) / Gam_s2 * exp(z3)
       ss = ss1 + ss2
       intensity = ss * np.conj(ss)
       intensity = np.real(intensity)
       return intensity

   # Function to calculate the intensity distribution of a triple-slit.
   # Parameter: slit width "s1", "s2", "s3"; slit distances "d1", "d2"; 
   # size parameter "ks1", and angle "\alpha".

   def tsl(s1, s2, s3, d1, d2, ks1, alpha):
       k = ks1 / s2
       z1 = 0 + 1.0j
       pref = z1 * k / 2 / pi

       ul1 = s1 / 2
       ul2 = ul1 + d1 + s2
       ul3 = - (s1 /2 + d2)

       ll1 = - ul1
       ll2 = ul2 - s2
       ll3 = ul3 - s3

       eu1 = z1 * k * ul1 * sin(alpha * pi / 180)
       eu2 = z1 * k * ul2 * sin(alpha * pi / 180)
       eu3 = z1 * k * ul3 * sin(alpha * pi / 180)

       el1 = z1 * k * ll1 * sin(alpha * pi / 180)
       el2 = z1 * k * ll2 * sin(alpha * pi / 180)
       el3 = z1 * k * ll3 * sin(alpha * pi / 180)
       ss1 = z1 / k /sin(alpha * pi / 180) * pref * (exp(- eu1) - exp(- el1))
       ss2 = z1 / k /sin(alpha * pi / 180) * pref * (exp(- eu2) - exp(- el2))
       ss3 = z1 / k /sin(alpha * pi / 180) * pref * (exp(- eu3) - exp(- el3))
       ss = ss1 + ss2 + ss3
       intensity = ss * np.conj(ss)
       intensity = np.real(intensity)
       return intensity
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A.2: Program “sphere_hDP.py”

This program refers to the exercise at the end of Chap. 4. It calculates the
differential and total scattering cross-sections of an acoustically soft sphere. A small
modification and the usage of special SciPy routines will allow you to handle also
the acoustically hard sphere. In so doing, the homogeneous Dirichlet condition
must be replaced by the homogeneous von Neumann condition that contains the
derivatives of the eigensolutions at the spherical surface.
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   # sphere_hDP.py

   # Scattering on an acoustically soft sphere (homogeneous Dirichlet problem).
   # The differential and total scattering cross-sections are calculated in steps 
   # of 0.5 degrees in [0,\pi]!

   print()
   print()
   print("Scattering on an acoustically soft sphere")
   print()
   print()

   import numpy as np
   import scipy as scp
   import scipy.special as scs
   import matplotlib.pyplot as plt

   # Input: radius "a" of the sphere and size parameter "beta = ka":

   a = float(input('radius a [mm]: '))
   beta = float(input('size parameter beta: '))
   N_cut = int(beta + 5.)  # truncation parameter of series expansion!
   k = beta / a

   # Calculation of the differential scattering cross-section at "theta" in [0,\pi]:

   theta = np.linspace(0.0, 180.0, 361)
   ctheta = np.cos(theta * scp.pi / 180.)
   zi = 0. + 1.0j
   pref = zi / k
   dscross = []
   psi_s = []
   for i in range(0, 361):
       psi = 0.0
       y = scs.lpn(N_cut,ctheta[i])
       y1 = y[0]
       for n in range(0, N_cut +1):
           u = scs.spherical_jn(n,beta)
           v0 = scs.spherical_yn(n,beta)
           v = u + zi * v0
           d_n = (2 * n + 1)
           sum_n = d_n * y1[n] * u / v
           psi = psi + sum_n
       psi = pref * psi
       psi_s = psi_s + [psi]
       dscross = dscross + [psi * np.conj(psi)]
   dscross = np.real(dscross)

   # Calculation of the total scattering cross-section and efficiency by use of 
   # the optical thorem:

   w = np.imag(psi_s[0])
   sca_tot = 4 * scp.pi * w / k
   sca_eff = ext_tot/ scp.pi / a**2
   print()
   print("total scattering cross-sect.: sca_tot = ", sca_tot)
   print("extinction efficiency: sca_eff = ", sca_eff)
   input()

   # Plotting the differential scattering cross-section:

   plt.yscale('log') 
   plt.plot(theta, dscross, linewidth=2.0)
   plt.xlabel("scat angle [deg]")
   plt.ylabel("diff. scat. cross-sect.")
   plt.show()
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A.3: Program “c_bell.py”

This program refers to the exercise formulated in Sect. 5.2.3. It is only one possible
way to accomplish the described marble experiment related to the classical Bell’s
experiment, and to check the validity of the CHSH-inequality with such a classical
experiment. If this program is modified to handle more than one input file, you
can run the four different experimental configurations required to check the CHSH
inequality at once.
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   #        c_bell.py

   # Classical Bell's experiment with differently coloured marbles 
   # as described in Sect. 5.2.3

   # Note that the additional 2 boxes on each side are complementary 
   # filled with black and white marbles! It is therefore sufficient 
   # to specify only 1 box on each side! 

   import numpy as np

   # Read the input parameter from file "bell_input_data_e.txt":
   # Note, that

   # "RBw_Nw" represents the number of white marbles in box Bw on the right-hand side
   # "RBw_Ns" represents the number of black marbles in box Bb on the right-hand side
   # "LBw_Nw" represents the number of white marbles in box Bw on the left-hand side
   # "LBw_Ns" represents the number of black marbles in box Bb on the left-hand side
   # "Nexp" represents the total number of runs for a given configuration

   fobj = open("bell_input_data_e.txt", "r")  # this file must exist in the 
   #                                          working directory

   z = []
   for line in fobj:
       arr = line.split('=')
       wert = int(arr[1])
       z = z + [wert]
   fobj.close()

   RBw_Nw = z[0]
   RBw_Ns = z[1]

   LBw_Nw = z[2]
   LBw_Ns = z[3]

   Nexp = z[4]

   # Boxes on the right-hand side:

   RBw_Ng = RBw_Nw + RBw_Ns
   RBw_L = int(RBw_Ns * 100 / RBw_Ng) - 1
   RBs_Nw = RBw_Ns
   RBs_Ns = RBw_Nw
   RBs_Ng = RBs_Nw + RBs_Ns
   RBs_L = int(RBs_Nw * 100 / RBs_Ng) - 1

   # Boxes on the left-hand side:

   LBw_Ng = LBw_Nw + LBw_Ns
   LBw_L = int(LBw_Ns * 100 / LBw_Ng) - 1
   LBs_Nw = LBw_Ns
   LBs_Ns = LBw_Nw

   LBs_Ng = LBs_Nw + LBs_Ns

   LBs_L = int(LBs_Nw * 100 / LBs_Ng) - 1

   # Definition of the possible events!

   ev_ws = ['white', 'black']

   ev_sw = ['black', 'white']

   ev_ww = ['white', 'white']

   ev_ss = ['black', 'black']
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   # Generating the random numbers related to the primary box Bp:

   za_Bp = np.random.randint(2, size = Nexp)

   # Generating the random numbers related to the additional boxes 

   # on the left- and right-hand sie:

   za_RBws = np.random.randint(100, size = Nexp)

   za_LBws = np.random.randint(100, size = Nexp)

   # Generating the single events for a given experimental configuration:

   res = []

   for i in range(0, Nexp):

       zr_Bp = za_Bp[i]

       zr_RBs = za_RBws[i]

       zr_RBw = zr_RBs

       zl_LBs = za_LBws[i]

       zl_LBw = zl_LBs

       if zr_Bp == 0:

           if zr_RBs > RBs_L and zl_LBw > LBw_L:

               zr = ["black"]

               zl = ["white"]

           elif zr_RBs <= RBs_L and zl_LBw > LBw_L:

               zr = ["white"]

               zl = ["white"]

           elif zr_RBs > RBs_L and zl_LBw <= LBw_L:

               zr = ["black"]

               zl = ["black"]

           elif zr_RBs <= RBs_L and zl_LBw <= LBw_L:

               zr = ["white"]

               zl = ["black"]

       elif zr_Bp == 1:

           if zr_RBw > RBw_L and zl_LBs > LBs_L:

               zr = ["white"]

               zl = ["black"]

           elif zr_RBw <= RBw_L and zl_LBs > LBs_L:

               zr = ["black"]

               zl = ["black"]

           elif zr_RBw > RBw_L and zl_LBs <= LBs_L:

               zr = ["white"]

               zl = ["white"]

           elif zr_RBw <= RBw_L and zl_LBs <= LBs_L:

               zr = ["black"]

               zl = ["white"]
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       a = zl + zr

       res = res + [a]

   anz_ev_ws = 0

   anz_ev_sw = 0

   anz_ev_ww = 0

   anz_ev_ss = 0

   for i in range(0, Nexp):

       if res[i] == ev_ws:

           anz_ev_ws = anz_ev_ws + 1

       elif res[i] == ev_sw:

           anz_ev_sw = anz_ev_sw + 1

       elif res[i] == ev_ww:

           anz_ev_ww = anz_ev_ww + 1

       elif res[i] == ev_ss:

           anz_ev_ss = anz_ev_ss + 1

   whs_ev_ws = anz_ev_ws / Nexp

   whs_ev_sw = anz_ev_sw / Nexp

   whs_ev_ww = anz_ev_ww / Nexp

   whs_ev_ss = anz_ev_ss / Nexp

   summe = whs_ev_ww + whs_ev_ss + whs_ev_ws + whs_ev_sw

   corr = whs_ev_ww + whs_ev_ss - whs_ev_ws - whs_ev_sw

   # Experimental numbers and probabilities of each event:

   print()

   print('Experimental numbers and probabilities:')

   print()

   print('number of event ', ev_ws, ':   ', anz_ev_ws, ' ;', '  whs_ws: ', whs_ev_ws)

   print('number of event ', ev_sw, ':   ', anz_ev_sw, ' ;', '  whs_sw: ', whs_ev_sw)

   print('number of event ', ev_ww, ':     ', anz_ev_ww, ' ;', '  whs_ww: ', whs_ev_ww)

   print('number of event ', ev_ss, ': ', anz_ev_ss, ' ;', '  whs_ss: ', whs_ev_ss)

   # input()

   print('sum of probabilities: ', summe)

   print()

   print('correlation C = whs_ww + whs_ss - whs_ws - whs_sw: ', corr)

   # Calculation of the theoretical probabilities:

   c2beta = RBw_Nw / RBw_Ng

   s2beta = RBw_Ns / RBw_Ng

   c2alpha = LBw_Nw / LBw_Ng

   s2alpha = LBw_Ns / LBw_Ng

   th_whs_ev_ws = (c2beta * c2alpha + s2beta * s2alpha)/ 2.

   th_whs_ev_sw = th_whs_ev_ws

   th_whs_ev_ww = (s2beta * c2alpha + c2beta * s2alpha) / 2.

   th_whs_ev_ss = th_whs_ev_ww
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   print()

   print('theoretical probabilities:')

   print()

   print('probability of event ', ev_ws, ':   ', '  Whs: ', th_whs_ev_ws)

   print('probability of event ', ev_sw, ':   ', '  Whs: ', th_whs_ev_sw)

   print('probability of event ', ev_ww, ':     ', '  Whs: ', th_whs_ev_ww)

   print('probability of event ', ev_ss, ': ', '  Whs: ', th_whs_ev_ss)

   input()

   ############# End of main program #######################

   # Example of the file "bell_input_data_e.txt". Start with the first line!

   RBw_Nw = 17

   RBw_Ns = 3

   LBw_Nw = 1

   LBw_Ns = 1

   Nexp = 5000
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